余弦定理教案。
教案課件是老師教學工作的起始環(huán)節(jié),這就需要我們老師自己抽時間去完成。寫好教案課件,可以避免重要內容被忘記,什么樣的教案課件才是好課件呢?《余弦定理教案》是由編輯特意為您提供的內容,歡迎大家借鑒與參考,希望對大家有所幫助!
各位評委老師,
下午好!今天我說課的題目是余弦定理,說課的內容為余弦定理第二課時,下面我將從說教材、說學情、說教法和學法、說教學過程、說板書設計這四個方面來對本課進行詳細說明:
一、說教材
(一)教材地位與作用
《余弦定理》是必修5第一章《解三角形》的第一節(jié)內容,前面已經學習了正弦定理以及必修4中的任意角、誘導公式以及恒等變換,為后面學習三角函數(shù)奠定了基礎,因此本節(jié)課有承上啟下的作用。本節(jié)課是解決有關斜三角形問題以及應用問題的一個重要定理,它將三角形的邊和角有機地聯(lián)系起來,實現(xiàn)了“邊”與“角”的互化,從而使“三角”與“幾何”產生聯(lián)系,為求與三角形有關的量提供了理論依據(jù),同時也為判斷三角形形狀,證明三角形中的有關等式提供了重要依據(jù)。
(二)教學目標
根據(jù)上述教材內容分析以及新課程標準,考慮到學生已有的認知結構,心理特征及原有知識水平,我將本課的教學目標定為:
⒈知識與技能:
掌握余弦定理的內容及公式;能初步運用余弦定理解決一些斜三角形
⒉過程與方法:
在探究學習的過程中,認識到余弦定理可以解決某些與測量和幾何計算有關的實際問題,幫助學生提高運用有關知識解決實際問題的能力。
⒊情感、態(tài)度與價值觀:
培養(yǎng)學生的探索精神和創(chuàng)新意識;在運用余弦定理的過程中,讓學生逐步養(yǎng)成實事求是,扎實嚴謹?shù)目茖W態(tài)度,學習用數(shù)學的思維方式解決問題,認識世界;通過本節(jié)的運用實踐,體會數(shù)學的科學價值,應用價值;
(三)本節(jié)課的重難點
教學重點是:運用余弦定理探求任意三角形的邊角關系,解決與之有關的計算問題,運用余弦定理解決一些與測量以及幾何計算有關的實際問題。
教學難點是:靈活運用余弦定理解決相關的實際問題。
教學關鍵是:熟練掌握并靈活應用余弦定理解決相關的實際問題。
下面為了講清重點、難點,使學生能達到本節(jié)設定的教學目標,我再從教法和學法上談談:
二、說學情
從知識層面上看,高中學生通過前一節(jié)課的學習已經掌握了余弦定理及其推導過程;從能力層面上看,學生初步掌握運用余弦定理解決一些簡單的斜三角形問題的技能;從情感層面上看,學生對教學新內容的學習有相當?shù)呐d趣和積極性,但在探究問題的能力以及合作交流等方面的發(fā)展不夠均衡。
三、說教法和學法
貫徹的指導思想是把“學習的主動權還給學生”,倡導“自主、合作、探究”的學習方式。讓學生自主探索學會分析問題,解決問題。
四、說教學過程
下面為了完成教學目標,解決教學重點,突破教學難點,課堂教學我準備按以下五個環(huán)節(jié)展開:
環(huán)節(jié)⒈復習引入
由于本節(jié)課是余弦定理的第一課時,因此先領著學生回顧復習上節(jié)課所學的內容,采用提問的方式,找同學回答余弦定理的內容及公式,并且讓學生回想公式推導的思路和方法,這樣一來可以檢驗學生對所學知識的掌握情況,二來也為新課作準備。
環(huán)節(jié)⒉應用舉例
在本環(huán)節(jié)中,我將給出兩道典型例題
△ABC的頂點為A(6,5),B(-2,8)和C(4,1),求(精確到)。
已知三點A(1,3),B(-2,2),C(0,-3),求△ABC各內角的大小。
通過利用余弦定理解斜三角形的思想,來對這兩道例題進行分析和講解;本環(huán)節(jié)的目的在于通過典型例題的解答,鞏固學生所學的知識,進一步深化對于余弦定理的認識和理解,提高學生的理解能力和解題計算能力。
環(huán)節(jié)⒊練習反饋
練習B組題,1、2、3;習題1-1A組,1、2、3
在本環(huán)節(jié)中,我將找學生到黑板做題,期間巡視下面同學的做題情況,加以糾正和講解;通過解決書后練習題,鞏固學生當堂所學知識,同時教師也可以及時了解學生的掌握情況,以便及時調整自己的教學步調。
環(huán)節(jié)⒋歸納小結
在本環(huán)節(jié)中,我將采用師生共同總結-交流-完善的方式,首先讓學生自己總結出余弦定理可以解決哪些類型的問題,再由師生共同完善,總結出余弦定理可以解決的兩類問題:⑴已知三邊,求各角;⑵已知兩邊和它們的夾角,求第三邊和其他兩個角。本環(huán)節(jié)的目的在于引導學生學會自己總結;讓學生進一步體會知識的形成、發(fā)展、完善的過程。
環(huán)節(jié)⒌課后作業(yè)
必做題:習題1-1A組,6、7;習題1-1B組,2、3、4、5
選做題:習題1-1B組7,8,9.
基于因材施教的原則,在根據(jù)不同層次的學生情況,把作業(yè)分為必做題和選做題,必做題要求所有學生全部完成,選做題要求學有余力的學生完成,使不同程度的學生都有所提高。本環(huán)節(jié)的目的是讓學生進一步鞏固和深化所學的知識,培養(yǎng)學生的自主探究能力。
五、說板書
在本節(jié)課中我將采用提綱式的板書設計,因為提綱式-條理清楚、從屬關系分明,給人以清晰完整的印象,便于學生對教材內容和知識體系的理解和記憶。
一、單元教學內容
運算定律P——P?
二、單元教學目標
1、探索和理解加法交換律、結合律,乘法交換律、結合律和分配律,能運用運算定律進行一些簡便計算。
2、理解和掌握減法和除法的運算性質,并能應用這些運算性質進行簡便計算。
3、會應用運算律進行一些簡便運算,掌握運算技巧,提高計算能力。?
4、在經歷運算定律和運算性質的發(fā)現(xiàn)過程中,體驗歸納、總結和抽象的數(shù)學思維方法。
5、在經歷運算定律的字母公式形成過程中,能進行有條理地思考,并表達自己的思考結果。
6、經歷簡便計算過程,感受數(shù)的運算與日常生活的密切聯(lián)系,并在活動中學會與他人合作。
7、在經歷解決問題的過程中,體驗運算律的價值,增強應用數(shù)學的意識。
三、單元教學重、難點
1、理解加法交換律、結合律,乘法交換律、結合律和分配律,能運用運算定律進行一些簡便計算。
2、理解和掌握減法和除法的運算性質,并能應用這些運算性質進行簡便計算。
四、單元教學安排
運算定律10課時
第1課時 加法交換律和結合律
一、教學內容:
加法交換律和結合律P17——P18
二、教學目標:
1、在解決實際問題的過程中,發(fā)現(xiàn)并掌握加法交換律和結合律,學會用字母表示加法交換律和結合律。
2、在探索運算律的過程中,發(fā)展分析、比較、抽象、概括能力,培養(yǎng)學生的符號感。
3、培養(yǎng)學生的觀察能力和概括能力。
三、教學重難點
重點:發(fā)現(xiàn)并掌握加法交換律、結合律。
難點:由具體上升到抽象,概括出加法交換律和加法結合律。
四、教學準備
多媒體課件
五、教學過程
(一)導入新授
1、出示教材第17頁情境圖。
師:在我們班里,有多少同學會騎自行車?你最遠騎到什么地方? 師生交流后,課件出示李叔叔騎車旅行的場景:騎車是一項有益健康的運動,你看,這位李叔叔正在騎車旅行呢!
2、獲取信息。
師:從中你知道了哪些數(shù)學信息?(學生回答)
3、師小結信息,引出課題:加法交換律和結合律。
(二)探索發(fā)現(xiàn)
第一環(huán)節(jié) 探索加法交換律
1、課件繼續(xù)出示:“李叔叔今天上午騎了40km,下午騎了56km,一共騎了多少千米?”
學生口頭列式,教師板書出示: 40+56=96(千米) 56+40=96(千米) 你能用等號把這兩道算式寫成一個等式嗎? 40+56=56+40 你還能再寫出幾個這樣的等式嗎?
學生獨自寫出幾個這樣的等式,并在小組內交流各自寫出的等式,互相檢驗
寫出的等式是否符合要求。
2、觀察寫出的這些算式,你有什么發(fā)現(xiàn)?并用自己喜歡的方式表示出來。 全班交流。從這些算式可以發(fā)現(xiàn):兩個數(shù)相加,交換加數(shù)的位置,和不變??梢杂梅杹肀硎荆?+☆=☆+?;
可以用文字來表示:甲數(shù)十乙數(shù)=乙數(shù)十甲數(shù)。
3、如果用字母a、b分別表示兩個加數(shù),又可以怎樣來表示發(fā)現(xiàn)的這個規(guī)律呢? a+b=b+a
教師指出:這就是加法交換律。
4、初步應用:在( )里填上合適的數(shù)。
37+36=36+( )305+49=( )+305b+100=( )+b 47+( )=126+( ) m+( )=n+( ) 13+24=( )+( )
第二環(huán)節(jié) 探索加法結合律
1、課件出示教材第18頁例2情境圖。
師:從例2的情境圖中,你獲得了哪些信息?
師生交流后提出問題:要求“李叔叔三天一共騎了多少千米”可以怎樣列式? 學生獨立列式,指名匯報。 匯報預設:
方法一:先算出“第一天和第二天共騎了多少千米”: (88+104)+96=192+96 =288(千米)
方法二:先算出“第二天和第三天共騎了多少千米”: 88+(104+96)=88+200=288(千米)
把這兩道算式寫成一道等式:
(88+104)+96=88+(104+96)
2、算一算,下面的○里能填上等號嗎?
(45+25)+13○45+(25+13)(36+18)+22○36+(18+22)
小組討論。先比較每組的兩個算式,再比較這三組算式,在小組里說說你有
什么發(fā)現(xiàn)。
集體交流,使學生明確:三個算式加數(shù)沒變,加數(shù)的位置也沒變,運算的順序變了,它們的和不變。也就是:三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。
3、如果用字母a、b、c分別表示三個加數(shù),可以怎樣用字母來表示這個規(guī)律呢? (a+b)+c=a+(b+c)
教師指出:這就是加法結合律。
4、初步應用。
在橫線上填上合適的數(shù)。 (45+36)+64=45+(36+) (560+)+ =560+(140+70) (360+)+108=360+(92+) (57+c)+d=57+(+)
(三)鞏固發(fā)散
1、完成教材第18頁“做一做”。
學生獨立填寫,組織匯報時,讓學生說說是根據(jù)什么運算律填寫的。
2、下面各等式哪些符合加法交換律,哪些符合加法結合律?
(1)470+320=320+470
(2)a+55+45=55+45+a
(3)(27+65)+35=27+(65+35)
(4)70+80+40=70+40+80
(5)60+(a+50)=(60+a)+50 (6)b+900=900+b
(四)評價反饋
通過今天這節(jié)課的學習,你有哪些收獲?
師生交流后總結:學習了加法交換律和結合律,并知道了如何用符號和字母來表示發(fā)現(xiàn)的規(guī)律。
(五)板書設計
加法交換律和結合律
加法交換律加法結合律
例1:李叔叔今天一共騎了多少千米? 例2:李叔叔三天一共騎了多少千米? 40+56=96(千米) (88+104) +96 88+(104+96) 56+40=96(千米)=192+96 =88+200=288(千米) =288(千米) 40+56=56+40 (88+104)+96=88+(104+96) a+b=b+a (a+b)+c=a+(b+c)
兩個數(shù)相加,交換加數(shù)的位置,和不變。
六、教學后記
三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。
尊敬的評委老師們:
你們好,我今天說課的題目是余弦定理,(說教材) "余弦定理"是人教A版數(shù)學第必修5主要內容之一,是解決有關斜三角形問題的兩個重要定理之一,也是初中"勾股定理"內容的直接延拓,它是三角函數(shù)一般知識和平面向量知識在三角形中的具體運用,是解可轉化為三角形計算問題的其它數(shù)學問題及生產、生活實際問題的重要工具,因此具有廣泛的應用價值。本節(jié)課是"正弦定理、余弦定理"教學的第二節(jié)課,其主要任務是引入并證明余弦定理,在課型上屬于"定理教學課".
這堂課并不是將余弦定理全盤呈現(xiàn)給學生,而是從實際問題的求解困難,造成學生認知上的沖突,從而激發(fā)學生探索新知識的強烈欲望。另外,本節(jié)與教材其他課文的共
性是都要掌握定理內容及證明方法,會解決相關的問題。
下面說一說我的教學思路。
(教學目的)
通過對教材的分析鉆研制定了教學目的:
1.掌握余弦定理的內容及證明余弦定理的向量方法,會運用余弦定理解決兩類基本的解三角形問題。
2.培養(yǎng)學生在方程思想指導下解三角形問題的運算能力。
3.培養(yǎng)學生合情推理探索數(shù)學規(guī)律的思維能力。
4.通過三角函數(shù)、余弦定理、向量的數(shù)量積等知識的聯(lián)系,來理解事物普遍聯(lián)系與
辯證統(tǒng)一。
(教學重點)
余弦定理揭示了任意三角形邊角之間的客觀規(guī)律,()是解三角形的重要工具。余弦定理是初中學習的勾股定理的拓廣,也是前階段學習的三角函數(shù)知識與平面向量知識在三角形中的交匯應用。本節(jié)課的重點內容是余弦定理的發(fā)現(xiàn)和證明過程及基本應用,其
中發(fā)現(xiàn)余弦定理的過程是檢驗和訓練學生思維品質的重要素材。
(教學難點)
余弦定理是勾股定理的推廣形式,勾股定理是余弦定理的特殊情形,勾股定理在余弦定理的發(fā)現(xiàn)和證明過程中,起到奠基作用,因此分析勾股定理的結構特征是突破發(fā)現(xiàn)余弦定理這個難點的關鍵。
(教學方法)
在確定教學方法之前,首先分析一下學生:我所教的是課改一年級的學生。他們的基礎比正常高中的學生要差許多,拿其中一班學生來說:數(shù)學入學成績及格的占50%
左右,相對來說教材難度較大,要求教師吃透教材,選擇恰當?shù)慕虒W方法和教學手段把
知識傳授給學生。
根據(jù)教材和學生實際,本節(jié)主要采用"啟發(fā)式教學"、"講授法"、"演示法",并采用電教手段使用多媒體輔助教學。
1.啟發(fā)式教學:
利用一個工程問題創(chuàng)設情景,啟發(fā)學生對問題進行思考。在研究過程中,激發(fā)學生探索新知識的強烈欲望。
2. 練習法:通過練習題的訓練,讓學生從多角度對所學定理進行認識,反復的練習,體現(xiàn)學生的主體作用。
3. 講授法:充分發(fā)揮主導作用,引導學生學習。
4. 演示法:利用動畫、圖片,激發(fā)學生的學習興趣,調動學生積極性。
這節(jié)課準備的器材有:計算機、大屏幕。
(教學程序)
1. 復習正弦定理(2分鐘):安排一名同學上黑板寫正弦定理。
2. 設計精彩的新課導入(5分鐘):利用大屏幕演示一座山,先展示,后出現(xiàn)B、C,
再連成虛線,并閃動幾下,閃動邊AB、AC幾下,再閃動角A的陰影幾下,可測得
AC、AB的長及∠A大小。
問你知道工程技術人員是怎樣計算出來的嗎?
一下子,學生的注意力全被調動起來,學生一定會采用正弦定理,但很快發(fā)現(xiàn)
∠B、∠C不能確定,陷入困境當中。
3. 探索研究,合理猜想。
當AB=c,AC=b一定,∠A變化時,a可以認為是A的函數(shù),a=f(A),A∈(0,∏)
比較三種情況,學生會很快找到其中規(guī)律。 -2ab的系數(shù)-1、0、1與A=0、∏/2、∏之間存在對應關系。
教師指導學生由特殊到一般,經比較分析特例,概括出余弦定理,這種促使學生主動參與知識形成過程的教學方法,既符合學生學習的認知規(guī)律,又突出了學生的主體地位。"授人以魚",不如"授人以漁",引導學生發(fā)現(xiàn)問題,探究知識,建構知識,對學生
來說,既是對數(shù)學研究活動的一種體驗,又是掌握一種終身受用的治學方法。
4. 證明猜想,建構新知
接下來就是水到渠成,現(xiàn)在余弦定理還需要進一步證明,要符合數(shù)學的嚴密邏輯推理,鍛煉學生自己寫出定理證明的已知條件和結論,請一位學生到黑板寫出來,并請同學們自己進行證明。教師在課中進行指導,針對出現(xiàn)的問題,結合大屏幕打出的正
確過程進行講解。
在大屏幕打出余弦定理,為了促進學生記憶,在黑板上讓學生背著寫出定理,也是當
堂鞏固定理的方法。
5. 操作演練,鞏固提高
定理的應用是本節(jié)的重點之一。我分析題目,請同學們進行解答,在難點處進行點撥。以第二題為例,在求A的過程中學生會產生分歧,一部分采用正弦定理,一部分采用余弦定理,其實兩種做法都可得到正確答案,形成解法一和解法二。在這道例題中進行發(fā)散思維的訓練,(在上例中,能否既不使用余弦定理,也不使用正弦定理,
求出∠A?)
啟發(fā)一:a視為B 與C兩點間的距離,利用B、C的坐標構造含A的等式
啟發(fā)二:利用平移,用兩種方法求出C’點的坐標,構造等式。使學生的思維活躍,漸入新的境界。每次啟發(fā),或是針對一般原則的提示,或是在學生出現(xiàn)思維盲點
處點撥,或是學生"簡單一跳未摘到果子"時的及時提醒。
6. 課堂小結:
告訴學生余弦定理是任何三角形邊角之間存在的共同規(guī)律,勾股定理是余弦定理
的特例。
7. 布置作業(yè):書面作業(yè) 3道題
作業(yè)中注重余弦定理的應用,重點培養(yǎng)解決問題的能力。
以上是我的一點粗淺的認識,如有不對之處,請老師評委們給與指教,我的課說完了,謝謝各位。
1.地位及作用
"余弦定理"是人教A版數(shù)學必修5主要內容之一,是解決有關斜三角形問題的兩個重要定理之一,也是初中"勾股定理"內容的直接延拓,它是三角函數(shù)一般知識和平面向量知識在三角形中的具體運用,是解可轉化為三角形計算問題的其它數(shù)學問題及生產、生活實際問題的重要工具具有廣泛的應用價值,起到承上啟下的作用。
2.教學重、難點
重點:余弦定理的證明過程和定理的簡單應用。
難點:利用向量的數(shù)量積證余弦定理的思路。
知識目標:能推導余弦定理及其推論,能運用余弦定理解已知"邊,角,邊"和"邊,邊,邊"兩類三角形。
能力目標:培養(yǎng)學生知識的遷移能力;歸納總結的能力;運用所學知識解決實際問題的能力。
情感目標:從實際問題出發(fā)運用數(shù)學知識解決問題這個過程體驗數(shù)學在實際生活中的運用,激發(fā)學生學習數(shù)學的興趣。通過主動探索,合作交流,感受探索的樂趣和成功的體驗,體會數(shù)學的理性和嚴謹。
數(shù)學課堂上首先要重視知識的發(fā)生過程,既能展現(xiàn)知識的獲取,又能暴露解決問題的思維。在本節(jié)教學中,我將遵循"提出問題、分析問題、解決問題"的步驟逐步推進,以課堂教學的組織者、引導者、合作者的身份,組織學生探究、歸納、推導,引導學生逐個突破難點,師生共同解決問題,使學生在各種數(shù)學活動中掌握各種數(shù)學基本技能,初步學會從數(shù)學角度去觀察事物和思考問題,產生學習數(shù)學的愿望和興趣。
本節(jié)教學中通過創(chuàng)設情境,充分調動學生已有的學習經驗,讓學生經歷"現(xiàn)實問題轉化為數(shù)學問題"的過程,發(fā)現(xiàn)新的知識,把學生的潛意識狀態(tài)的好奇心變?yōu)樽杂X求知的創(chuàng)新意識。又通過實際操作,使剛產生的數(shù)學知識得到完善,提高了學生動手動腦的能力和增強了研究探索的綜合素質。
幫助學生從平面幾何、三角函數(shù)、向量知識等方面進行分析討論,選擇簡潔的處理工具,引發(fā)學生的積極討論。你能夠有更好的具體的量化方法嗎?問題可轉化為已知三角形兩邊長和夾角求第三邊的問題,即:在中已知AC=b,AB=c和A,求a.
學生對向量知識可能遺忘,注意復習;在利用數(shù)量積時,角度可能出現(xiàn)錯誤,出現(xiàn)不同的表示形式,讓學生從錯誤中發(fā)現(xiàn)問題,鞏固向量知識,明確向量工具的作用。同時,讓學生明確數(shù)學中的轉化思想:化未知為已知。將實際問題轉化成數(shù)學問題,引導學生分析問題。在中已知a=5,b=7,c=8,求B.
學生思考或者討論,若有同學答則順勢引出推論,若不能作答則由老師引導推出推論,然后返回解決該問題。
讓學生觀察推論的特征,討論該推論有什么用。
一、教材分析
1.地位及作用
“余弦定理”是人教A版數(shù)學必修5主要內容之一,是解決有關斜三角形問題的兩個重要定理之一,也是初中“勾股定理”內容的直接延拓,它是三角函數(shù)一般知識和平面向量知識在三角形中的具體運用,是解可轉化為三角形計算問題的其它數(shù)學問題及生產、生活實際問題的重要工具具有廣泛的應用價值,起到承上啟下的作用。
2.教學重、難點
重點:余弦定理的證明過程和定理的簡單應用。
難點:利用向量的數(shù)量積證余弦定理的思路。
二、教學目標
知識目標:能推導余弦定理及其推論,能運用余弦定理解已知“邊,角,邊”和“邊,邊,邊”兩類三角形。
能力目標:培養(yǎng)學生知識的遷移能力;歸納總結的能力;運用所學知識解決實際問題的能力。
情感目標:從實際問題出發(fā)運用數(shù)學知識解決問題這個過程體驗數(shù)學在實際生活中的運用,激發(fā)學生學習數(shù)學的興趣。通過主動探索,合作交流,感受探索的樂趣和成功的體驗,體會數(shù)學的理性和嚴謹。
三、教學方法
數(shù)學課堂上首先要重視知識的發(fā)生過程,既能展現(xiàn)知識的獲取,又能暴露解決問題的思維。在本節(jié)教學中,我將遵循“提出問題、分析問題、解決問題”的步驟逐步推進,以課堂教學的組織者、引導者、合作者的身份,組織學生探究、歸納、推導,引導學生逐個突破難點,師生共同解決問題,使學生在各種數(shù)學活動中掌握各種數(shù)學基本技能,初步學會從數(shù)學角度去觀察事物和思考問題,產生學習數(shù)學的愿望和興趣。
四、教學過程
本節(jié)教學中通過創(chuàng)設情境,充分調動學生已有的學習經驗,讓學生經歷“現(xiàn)實問題轉化為數(shù)學問題”的過程,發(fā)現(xiàn)新的知識,把學生的潛意識狀態(tài)的好奇心變?yōu)樽杂X求知的創(chuàng)新意識。又通過實際操作,使剛產生的數(shù)學知識得到完善,提高了學生動手動腦的能力和增強了研究探索的綜合素質。
幫助學生從平面幾何、三角函數(shù)、向量知識等方面進行分析討論,選擇簡潔的處理工具,引發(fā)學生的積極討論。你能夠有更好的具體的量化方法嗎?問題可轉化為已知三角形兩邊長和夾角求第三邊的問題,即:在中已知AC=b,AB=c和A,求a.
學生對向量知識可能遺忘,注意復習;在利用數(shù)量積時,角度可能出現(xiàn)錯誤,出現(xiàn)不同的表示形式,讓學生從錯誤中發(fā)現(xiàn)問題,鞏固向量知識,明確向量工具的作用。同時,讓學生明確數(shù)學中的轉化思想:化未知為已知。將實際問題轉化成數(shù)學問題,引導學生分析問題。在中已知a=5,b=7,c=8,求B.
學生思考或者討論,若有同學答則順勢引出推論,若不能作答則由老師引導推出推論,然后返回解決該問題。
讓學生觀察推論的特征,討論該推論有什么用。
大家好,今天我向大家說課的題目是《余弦定理》。下面我將從以下幾個方面介紹我這堂課的教學設計。
一、教材分析
本節(jié)知識是職業(yè)高中數(shù)學教材第五章第九節(jié)《解三角形》的內容,與初中學習的勾股定理有密切的聯(lián)系,在日常生活和工業(yè)生產中也時常有解三角形的問題,在實際測量問題及航海問題中都有著廣泛的用,而且解三角形和三角函數(shù)聯(lián)系在高考當中也時??家恍┙獯痤}。并且在探索建立余弦定理時還用到向量法,坐標法等數(shù)學方法,同時還用到了數(shù)形結合,方程等數(shù)學思想。因此,余弦定理的知識非常重要。特別是在三角形中的求角問題中作用更大。做為職業(yè)高中的學生必須學好學透這節(jié)知識
根據(jù)上述教材內容分析,考慮到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:
①理解掌握余弦定理,能正確使用定理
②培養(yǎng)學生教形結合分析問題的能力
③培養(yǎng)學生嚴謹?shù)耐评硭季S和良好的審美能力。
教學重點:定理的探究及應用
教學難點:定理的探究及理解
二、學情分析
對于職業(yè)高中的高一學生,雖然知識經驗并不豐富,但他們的智利發(fā)展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,所以我在授課時注重引導、啟發(fā)和探討以符合這類學生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。
三、教法分析
根據(jù)教材的內容和編排的特點,為更有效地突出重點,突破難點,以學生的發(fā)展為本,遵照學生的認識規(guī)律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想,采用探究式課堂教學模式,即在教學過程中,在教師的啟發(fā)引導下,以學生獨立自主和合作交流為前提,以“余弦定理的發(fā)現(xiàn)”為基本探究內容,讓學生的思維由問題開始,到發(fā)想、探究,定理的推導,并逐步得到深化。突破重點的手段:抓住學生情感的興奮點,激發(fā)他們的興趣,鼓勵學生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進。另外,抓知識選擇的切入點,從學生原有的認知水平和所需的知識特點入手,教師在學生主體下給以適當?shù)奶崾竞椭笇?。突破難點的方法:抓住學生的能力線,聯(lián)系方法與技能使學生較易證明余弦定理,另外通過例題和練習來突破難點,注重知識的形成過程,突出教學理念的創(chuàng)新。
四、學法指導:
指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結合,體現(xiàn)學生的主體地位,增強學生由特殊到一般的數(shù)學思維能力,形成了實事求是的科學態(tài)度,增強了鍥而不舍的求學精神。
五、教學過程
第一:創(chuàng)設情景,大概用2分鐘
第二:實踐探究,形成定理,大約用25分鐘
第三:應用定理,拓展反思,大約用13分鐘
(一)創(chuàng)設情境,布疑激趣
“興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,從用正弦定理可解的兩類三角形出發(fā),揭示勾股定理特點,說明正弦定理解三角形不完備,還有用正弦定理不能直接求解的三角形,應怎樣解決呢?需要我們繼續(xù)探究,引出課題。
(二)邏輯推理,證明猜想
提出問題,探究問題,形成定理,回顧分析,形成結論,再認識結論,總結用途。變形延伸,培養(yǎng)發(fā)散,對比特殊,認知推廣。落實定理,構建定理應用體系。
(三)歸納總結,簡單應用
1、讓學生用文字敘述余弦定理,引導學生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學美的享受。
2、回顧余弦定理的內容,討論可以解決哪幾類有關三角形的問題。
(四)講解例題,鞏固定理
1、審題確定條件。
2、明確求解任務。
3、確定使用公式。
4、科學求解過程。
(五)課堂練習,提高鞏固
1.在△ABC中,已知下列條件,解三角形.
(1)A=45°,C=30°,c=10cm
(2)A=60°,B=45°,c=20cm
2.在△ABC中,已知下列條件,解三角形.
(1)a=20cm,b=11cm,B=30°
(2)c=54cm,b=39cm,C=115°
學生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。
(六)小結反思,提高認識
通過以上的研究過程,同學們主要學到了那些知識和方法?你對此有何體會?
1、用向量證明了余弦定理,體現(xiàn)了數(shù)形結合的數(shù)學思想。
2、兩種表達。
3、兩類問題。
(七)思維拓展,自主探究
利用余弦定理判斷三角形形狀,即余弦定理的推論。
一、教材分析:(說教材)
《余弦定理》是全日制中等國家規(guī)劃教材(人教版)數(shù)學第一冊中第六章平面向量第六部分。余弦定理是歐氏空間度量幾何的最重要定理,是解斜三角形的重要定理,是整個測量學的基礎。余弦定理是勾股定理的推廣,可用解析法、向量法等方法證明。余弦定理主要能解決有關三角形的三類問題:
1)、已知兩邊及其夾角,求第三邊和其他兩個角。
2)、已知三邊求三個內角;
3)、判斷三角形的形狀。以及相關的證明題。
二、說教學思路
本著數(shù)學與專業(yè)有機結合的指導思想,讓數(shù)學服務于專業(yè)的需要。以及最大限度的提高學生的學習興趣,在本節(jié)課,我不是將余弦定理簡單呈現(xiàn)給學生,而是創(chuàng)造設情境,設計了與機械相關聯(lián)并具有愛國主題的二個任務,通過任務驅動法教學,極大提高了學生的學習興趣,激發(fā)學生探索新知識的強烈求知欲望,在完成數(shù)學教學任務的同時,強化了數(shù)學與專業(yè)的有機結合,培養(yǎng)了學生將數(shù)學知識運用于自身專業(yè)中的能力。同時通過任務驅動,培養(yǎng)了學生自主探究式學習的能力;提升解決實際實際問題的能力。因為所設計的兩個任務具有愛國主義題材,學生在完成知識學習的同時,也極大的激發(fā)了愛國主義精神。
三、說教法
在確定教學方法前,首先要求教師吃透教材,選擇恰當?shù)慕虒W方法和教學手段把知識傳授給學生。本節(jié)課主要采用任務驅動法、引導發(fā)現(xiàn)法、觀察法、歸納總結法、講練結合法。并采用電教手段使用多媒體輔助教學。
1.任務驅動法
教師精心設計與機械專業(yè)相關聯(lián)的二個任務,作為貫穿整節(jié)課的主線,通過具體任務的完成,提高學生學習的興趣,激發(fā)求知欲,啟發(fā)學生對問題進行思考。在研究過程中,激發(fā)學生探索新知識的強烈欲望。提升解決實際總是的能力,并極大的激發(fā)了愛國主義精神。
2.引導發(fā)現(xiàn)法、觀察法
通過對勾股定理的觀察和三角形直角的相關變形,學生從中受啟發(fā),發(fā)現(xiàn)余弦定理,并證明它。
3.歸納總結法
學生通過前期的探索研究,自主歸納總結出余弦定理及其推論及判斷三角形形狀的相關規(guī)律。
4.講練結合法
講授充分發(fā)揮教師主導作用,引導學生自主學習。練習讓學生從多角度對所學定理進行認知,及時鞏固所學的知識,鍛煉了解決實際問題的能力,發(fā)揮出學生的主觀能動性,成為學習的主體。
四、說學法
學生學法主要有觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法。經教師啟發(fā)、誘導,學生通過觀察與分析去發(fā)現(xiàn)并證明余弦定理,培養(yǎng)歸納與猜想、抽象與概括等邏輯思維能力,訓練思維品質。
五、教學目標
(一)知識目標
1、使學生掌握余弦定理及其證明。
2、使學生初步掌握應用余弦定理解斜三角形。
1
(二)能力目標
1、培養(yǎng)學生在本專業(yè)范圍內熟練運用余弦定理解決實際問題的能力。
2、通過啟發(fā)、誘導學生發(fā)現(xiàn)和證明余弦定理的過程,培養(yǎng)學生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。
3、通過對余弦定理的推導,培養(yǎng)學生的知識遷移能力和建模意識,及合作學習的意識。
(三)德育目標
1、培養(yǎng)學生的愛國主義精神、及團結、協(xié)作精神。
2、通過三角函數(shù)、余弦定理、向量的數(shù)量積等知識的聯(lián)系理解事物之間普遍聯(lián)系與辯證統(tǒng)一。
六、教學重點
教學重點是余弦定理及應用余弦定理解斜三角形;
七、教學難點
分析勾股定理的結構特征,從而突破發(fā)現(xiàn)余弦定理,應用余弦定理解斜三角形。八、教學過程
教學中注重突出重點、突破難點,從五個層次進行教學。
創(chuàng)設情境、任務驅動;
引導探究、發(fā)現(xiàn)定理;
完成任務、應用遷移;
拓展升華、交流反思;
小結歸納、布置作業(yè)。
(一)、導入
1、教師創(chuàng)設情境設置二個任務,做為貫穿本課的主線和數(shù)學與專業(yè)有機結合的鈕帶,通過完成這二個任務,達到掌握余弦定理并學會應用的目標。
2、通過與直角三角形勾股定理引出余弦定理(快樂起點)經教師啟發(fā)、誘導,學生通過探索研究,合理猜想來發(fā)現(xiàn)余弦定理。
(二)、新課
3.證明猜想,導出余弦定理及余弦定理的變形
經過嚴密邏輯推理證明得出余弦定理,這一過程中,鍛煉了學生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。
4.解決二個任務
5.操作演練,鞏固提高。
6.小結:
通過學生口答方式小結,讓學生強化記憶,分清重點,深化對余弦定理的理解。
7.作業(yè):
分層布置作業(yè),根據(jù)不同層次學生將作業(yè)分為必做題和選做題。使不同程度的學生都有所提高
八、板書設計
板書是課堂教學重要部分,為再現(xiàn)知識體系,突出重點,將余弦定理知識體系展示在板書中,利于學生加深印象,理清思路。
九、課后反思
在教學設計上,采用任務驅動,教師精心設計與機械專業(yè)相關聯(lián)的二個任務,作為貫穿整節(jié)課的主線,通過具體任務的完成,即提高學生學習的興趣,又激發(fā)求知欲;知識點學習則循序漸進,符合學生的認知特點。經教師啟發(fā)、誘導,學生通過觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法在獲取新知的同時,培養(yǎng)了歸納與猜想、抽象與概括等邏輯思維能力。
相信《余弦定理教案匯總》一文能讓您有很多收獲!“幼兒教師教育網(wǎng)”是您了解幼兒園教案,工作計劃的必備網(wǎng)站,請您收藏yjs21.com。同時,編輯還為您精選準備了余弦定理教案專題,希望您能喜歡!
相關推薦
學生時代的我們經常會寫作文,寫作文可以鞏固我們的專注力。寫作文前最關鍵的是確定好選材,想好標題,寫好作文,我們到底要怎么做?經過搜索整理,小編為你呈現(xiàn)“課余趣事作文900字匯總”,歡迎收藏本網(wǎng)站,繼續(xù)關注我們的更新!我的課余生活很豐富:看書、喂烏龜、釣龍蝦、捉螃蟹、集賀卡、下棋和集郵等等??晌易钕矚g...
宜未雨綢而繆,毋臨竭而掘井。杰出的幼兒教學工作者能使孩子們充分的學習吸收到課本知識,因此,老師們都會選擇準備一份教案,教案有助于老師在之后的上課教學中井然有序的進行。你知道怎么寫具體的幼兒園教案內容嗎?為滿足您的需求,小編特地編輯了“課件推薦 伯牙絕弦教案板書匯集”,希望能對您有所幫助,請收藏。一、...
一個今天抵得上兩個明天。撕一張日歷,很簡單,把握住一天,卻不容易。相信別人,放棄自己,這是許多人失敗人生的開始!在最艱難的時刻,更要相信自己手中握有最好的。有時,文字是一片沙漠的綠洲,使黯然失望的人感到久違的希望。有時候我們總能從簡單的句子細節(jié)中洞察人生。最近是否對平淡幸福的句子感興趣呢?幼兒教師教...
寫教案也是教師的工作內容之一。教案使教學過程有了科學依據(jù),教學活動的每個步驟環(huán)節(jié)都有相應的理論支撐,有哪些教案模板值得借鑒呢?小編為您整理了一份關于《平面向量基本定理說課稿》最新動態(tài)的專題報道,更多信息請繼續(xù)關注我們的網(wǎng)站!...
最新更新