因式分解教案。
俗話說(shuō),磨刀不誤砍柴工。身為一位優(yōu)秀的幼兒園的老師我們都希望自己能教孩子們學(xué)到一些知識(shí),大部分的教案都是為了讓學(xué)生的學(xué)習(xí)效率得到提升,教案為學(xué)生帶來(lái)更好的聽(tīng)課體驗(yàn),從而提高聽(tīng)課效率。幼兒園教案的內(nèi)容具體要怎樣寫(xiě)呢?經(jīng)過(guò)收集,小編為您獻(xiàn)上因式分解教案,希望能幫助到你,請(qǐng)收藏。
教學(xué)目標(biāo):
1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式綜合應(yīng)用;能利用平方差公式法解決實(shí)際問(wèn)題。
2、經(jīng)歷探究分解因式方法的過(guò)程,體會(huì)整式乘法與分解因式之間的聯(lián)系。
3、通過(guò)對(duì)公式的探究,深刻理解公式的應(yīng)用,并會(huì)熟練應(yīng)用公式解決問(wèn)題。
4、通過(guò)探究平方差公式特點(diǎn),學(xué)生根據(jù)公式自己取值設(shè)計(jì)問(wèn)題,并根據(jù)公式自己解決問(wèn)題的過(guò)程,讓學(xué)生獲得成功的體驗(yàn),培養(yǎng)合作交流意識(shí)。
教學(xué)重點(diǎn):
應(yīng)用平方差公式分解因式.
教學(xué)難點(diǎn):
靈活應(yīng)用公式和提公因式法分解因式,并理解因式分解的要求.
教學(xué)過(guò)程:
一、復(fù)習(xí)準(zhǔn)備 導(dǎo)入新課
1、什么是因式分解?判斷下列變形過(guò)程,哪個(gè)是因式分解?
①(x+2)(x-2)= ②
③
2、我們已經(jīng)學(xué)過(guò)的因式分解的方法有什么?將下列多項(xiàng)式分解因式。
x2+2x
a2b-ab
3、根據(jù)乘法公式進(jìn)行計(jì)算:
(1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=
二、合作探究 學(xué)習(xí)新知
(一) 猜一猜:你能將下面的多項(xiàng)式分解因式嗎?
(1)= (2)= (3)=
(二)想一想,議一議: 觀察下面的公式:
=(a+b)(a—b)(
這個(gè)公式左邊的多項(xiàng)式有什么特征:_____________________________________
公式右邊是__________________________________________________________
這個(gè)公式你能用語(yǔ)言來(lái)描述嗎? _______________________________________
(三)練一練:
1、下列多項(xiàng)式能否用平方差公式來(lái)分解因式?為什么?
① ② ③ ④
2、你能把下列的數(shù)或式寫(xiě)成冪的形式嗎?
(1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) 0.49b2=( )2 (7) 81n6=( )2 (8) 100p4q2=( )2
(四)做一做:
例3 分解因式:
(1) 4x2- 9 (2) (x+p)2- (x+q)2
(五)試一試:
例4 下面的式子你能用什么方法來(lái)分解因式呢?請(qǐng)你試一試。
(1) x4- y4 (2) a3b- ab
(六)想一想:
某學(xué)校有一個(gè)邊長(zhǎng)為85米的正方形場(chǎng)地,現(xiàn)在場(chǎng)地的四個(gè)角分別建一個(gè)邊長(zhǎng)為5米的正方形花壇,問(wèn)場(chǎng)地還剩余多大面積供學(xué)生課間活動(dòng)使用?
教學(xué)目標(biāo)
1.知識(shí)與技能
了解因式分解的意義,以及它與整式乘法的關(guān)系.
2.過(guò)程與方法
經(jīng)歷從分解因數(shù)到分解因式的類(lèi)比過(guò)程,掌握因式分解的概念,感受因式分解在解決問(wèn)題中的作用.
3.情感、態(tài)度與價(jià)值觀
在探索因式分解的方法的活動(dòng)中,培養(yǎng)學(xué)生有條理的思考、表達(dá)與交流的能力,培養(yǎng)積極的進(jìn)取意識(shí),體會(huì)數(shù)學(xué)知識(shí)的內(nèi)在含義與價(jià)值.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):了解因式分解的意義,感受其作用.
2.難點(diǎn):整式乘法與因式分解之間的關(guān)系.
3.關(guān)鍵:通過(guò)分解因數(shù)引入到分解因式,并進(jìn)行類(lèi)比,加深理解.
教學(xué)方法
采用“激趣導(dǎo)學(xué)”的教學(xué)方法.
教學(xué)過(guò)程
一、創(chuàng)設(shè)情境,激趣導(dǎo)入
【問(wèn)題牽引】
請(qǐng)同學(xué)們探究下面的2個(gè)問(wèn)題:
問(wèn)題1:720能被哪些數(shù)整除?談?wù)勀愕南敕ǎ?/p>
問(wèn)題2:當(dāng)a=102,b=98時(shí),求a2-b2的值.
二、豐富聯(lián)想,展示思維
探索:你會(huì)做下面的填空嗎?
1.ma+mb+mc=( )( );
2.x2-4=( )( );
3.x2-2xy+y2=( )2.
【師生共識(shí)】把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,叫做把這個(gè)多項(xiàng)式因式分解,也叫做分解因式.
三、小組活動(dòng),共同探究
【問(wèn)題牽引】
(1)下列各式從左到右的變形是否為因式分解:
①(x+1)(x-1)=x2-1;
②a2-1+b2=(a+1)(a-1)+b2;
③7x-7=7(x-1).
(2)在下列括號(hào)里,填上適當(dāng)?shù)捻?xiàng),使等式成立.
①9x2(______)+y2=(3x+y)(_______);
②x2-4xy+(_______)=(x-_______)2.
四、隨堂練習(xí),鞏固深化
課本練習(xí).
【探研時(shí)空】計(jì)算:993-99能被100整除嗎?
五、課堂總結(jié),發(fā)展?jié)撃?/strong>
由學(xué)生自己進(jìn)行小結(jié),教師提出如下綱目:
1.什么叫因式分解?
2.因式分解與整式運(yùn)算有何區(qū)別?
六、布置作業(yè),專(zhuān)題突破
選用補(bǔ)充作業(yè).
板書(shū)設(shè)計(jì)
15.4.1 因式分解
1、因式分解 例:
練習(xí):
15.4.2 提公因式法
教學(xué)目標(biāo)
1.知識(shí)與技能
能確定多項(xiàng)式各項(xiàng)的公因式,會(huì)用提公因式法把多項(xiàng)式分解因式.
2.過(guò)程與方法
使學(xué)生經(jīng)歷探索多項(xiàng)式各項(xiàng)公因式的過(guò)程,依據(jù)數(shù)學(xué)化歸思想方法進(jìn)行因式分解.
3.情感、態(tài)度與價(jià)值觀
培養(yǎng)學(xué)生分析、類(lèi)比以及化歸的思想,增進(jìn)學(xué)生的合作交流意識(shí),主動(dòng)積極地積累確定公因式的初步經(jīng)驗(yàn),體會(huì)其應(yīng)用價(jià)值.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):掌握用提公因式法把多項(xiàng)式分解因式.
2.難點(diǎn):正確地確定多項(xiàng)式的最大公因式.
3.關(guān)鍵:提公因式法關(guān)鍵是如何找公因式.方法是:一看系數(shù)、二看字母.公因式的系數(shù)取各項(xiàng)系數(shù)的最大公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.
教學(xué)方法
采用“啟發(fā)式”教學(xué)方法.
教學(xué)過(guò)程
一、回顧交流,導(dǎo)入新知
【復(fù)習(xí)交流】
下列從左到右的變形是否是因式分解,為什么?
(1)2x2+4=2(x2+2); (2)2t2-3t+1= (2t3-3t2+t);
(3)x2+4xy-y2=x(x+4y)-y2; (4)m(x+y)=mx+my;
(5)x2-2xy+y2=(x-y)2.
問(wèn)題:
1.多項(xiàng)式mn+mb中各項(xiàng)含有相同因式嗎?
2.多項(xiàng)式4x2-x和xy2-yz-y呢?
請(qǐng)將上述多項(xiàng)式分別寫(xiě)成兩個(gè)因式的乘積的形式,并說(shuō)明理由.
【教師歸納】我們把多項(xiàng)式中各項(xiàng)都有的公共的因式叫做這個(gè)多項(xiàng)式的公因式,如在mn+mb中的公因式式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.
概念:如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成兩個(gè)因式乘積形式,這種分解因式的方法叫做提公因式法.
二、小組合作,探究方法
【教師提問(wèn)】 多項(xiàng)式4x2-8x6,16a3b2-4a3b2-8ab4各項(xiàng)的公因式是什么?
【師生共識(shí)】提公因式的方法是先確定各項(xiàng)的公因式再將多項(xiàng)式除以這個(gè)公因式得到另一個(gè)因式,找公因式一看系數(shù)、二看字母,公因式的系數(shù)取各項(xiàng)系數(shù)的最大公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.
三、范例學(xué)習(xí),應(yīng)用所學(xué)
【例1】把-4x2yz-12xy2z+4xyz分解因式.
解:-4x2yz-12xy2z+4xyz
=-(4x2yz+12xy2z-4xyz)
=-4xyz(x+3y-1)
【例2】分解因式,3a2(x-y)3-4b2(y-x)2
【思路點(diǎn)撥】觀察所給多項(xiàng)式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法.
解法1:3a2(x-y)3-4b2(y-x)2
=-3a2(y-x)3-4b2(y-x)2
=-[(y-x)23a2(y-x)+4b2(y-x)2]
=-(y-x)2 [3a2(y-x)+4b2]
=-(y-x)2(3a2y-3a2x+4b2)
解法2:3a2(x-y)3-4b2(y-x)2
=(x-y)23a2(x-y)-4b2(x-y)2
=(x-y)2 [3a2(x-y)-4b2]
=(x-y)2(3a2x-3a2y-4b2)
【例3】用簡(jiǎn)便的方法計(jì)算:0.84×12+12×0.6-0.44×12.
【教師活動(dòng)】引導(dǎo)學(xué)生觀察并分析怎樣計(jì)算更為簡(jiǎn)便.
解:0.84×12+12×0.6-0.44×12
=12×(0.84+0.6-0.44)
=12×1=12.
【教師活動(dòng)】在學(xué)生完全例3之后,指出例3是因式分解在計(jì)算中的應(yīng)用,提出比較例1,例2,例3的公因式有什么不同?
四、隨堂練習(xí),鞏固深化
課本P167練習(xí)第1、2、3題.
【探研時(shí)空】
利用提公因式法計(jì)算:
0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69
五、課堂總結(jié),發(fā)展?jié)撃?/strong>
1.利用提公因式法因式分解,關(guān)鍵是找準(zhǔn)最大公因式.在找最大公因式時(shí)應(yīng)注意:(1)系數(shù)要找最大公約數(shù);(2)字母要找各項(xiàng)都有的;(3)指數(shù)要找最低次冪.
2.因式分解應(yīng)注意分解徹底,也就是說(shuō),分解到不能再分解為止.
六、布置作業(yè),專(zhuān)題突破
課本P170習(xí)題15.4第1、4(1)、6題.
板書(shū)設(shè)計(jì)
15.4.2 提公因式法
1、提公因式法 例:
練習(xí):
15.4.3 公式法(一)
教學(xué)目標(biāo)
1.知識(shí)與技能
會(huì)應(yīng)用平方差公式進(jìn)行因式分解,發(fā)展學(xué)生推理能力.
2.過(guò)程與方法
經(jīng)歷探索利用平方差公式進(jìn)行因式分解的過(guò)程,發(fā)展學(xué)生的逆向思維,感受數(shù)學(xué)知識(shí)的完整性.
3.情感、態(tài)度與價(jià)值觀
培養(yǎng)學(xué)生良好的互動(dòng)交流的習(xí)慣,體會(huì)數(shù)學(xué)在實(shí)際問(wèn)題中的應(yīng)用價(jià)值.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):利用平方差公式分解因式.
2.難點(diǎn):領(lǐng)會(huì)因式分解的解題步驟和分解因式的徹底性.
3.關(guān)鍵:應(yīng)用逆向思維的方向,演繹出平方差公式,對(duì)公式的應(yīng)用首先要注意其特征,其次要做好式的變形,把問(wèn)題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來(lái).
教學(xué)方法
采用“問(wèn)題解決”的教學(xué)方法,讓學(xué)生在問(wèn)題的牽引下,推進(jìn)自己的'思維.
教學(xué)過(guò)程
一、觀察探討,體驗(yàn)新知
【問(wèn)題牽引】
請(qǐng)同學(xué)們計(jì)算下列各式.
(1)(a+5)(a-5); (2)(4m+3n)(4m-3n).
【學(xué)生活動(dòng)】動(dòng)筆計(jì)算出上面的兩道題,并踴躍上臺(tái)板演.
(1)(a+5)(a-5)=a2-52=a2-25;
(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.
【教師活動(dòng)】引導(dǎo)學(xué)生完成下面的兩道題目,并運(yùn)用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律.
1.分解因式:a2-25; 2.分解因式16m2-9n.
【學(xué)生活動(dòng)】從逆向思維入手,很快得到下面答案:
(1)a2-25=a2-52=(a+5)(a-5).
(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).
【教師活動(dòng)】引導(dǎo)學(xué)生完成a2-b2=(a+b)(a-b)的同時(shí),導(dǎo)出課題:用平方差公式因式分解.
平方差公式:a2-b2=(a+b)(a-b).
評(píng)析:平方差公式中的字母a、b,教學(xué)中還要強(qiáng)調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項(xiàng)式、多項(xiàng)式).
二、范例學(xué)習(xí),應(yīng)用所學(xué)
【例1】把下列各式分解因式:(投影顯示或板書(shū))
(1)x2-9y2; (2)16x4-y4;
(3)12a2x2-27b2y2; (4)(x+2y)2-(x-3y)2;
(5)m2(16x-y)+n2(y-16x).
【思路點(diǎn)撥】在觀察中發(fā)現(xiàn)1~5題均滿(mǎn)足平方差公式的特征,可以使用平方差公式因式分解.
【教師活動(dòng)】啟發(fā)學(xué)生從平方差公式的角度進(jìn)行因式分解,請(qǐng)5位學(xué)生上講臺(tái)板演.
【學(xué)生活動(dòng)】分四人小組,合作探究.
解:(1)x2-9y2=(x+3y)(x-3y);
(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);
(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);
(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x-y);
(5)m2(16x-y)+n2(y-16x)
=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).
三、隨堂練習(xí),鞏固深化
課本P168練習(xí)第1、2題.
【探研時(shí)空】
1.求證:當(dāng)n是正整數(shù)時(shí),n3-n的值一定是6的倍數(shù).
2.試證兩個(gè)連續(xù)偶數(shù)的平方差能被一個(gè)奇數(shù)整除.連續(xù)偶數(shù)的平方差能被一個(gè)奇數(shù)整除.
四、課堂總結(jié),發(fā)展?jié)撃?/strong>
運(yùn)用平方差公式因式分解,首先應(yīng)注意每個(gè)公式的特征.分析多項(xiàng)式的次數(shù)和項(xiàng)數(shù),然后再確定公式.如果多項(xiàng)式是二項(xiàng)式,通常考慮應(yīng)用平方差公式;如果多項(xiàng)式中有公因式可提,應(yīng)先提取公因式,而且還要“提”得徹底,最后應(yīng)注意兩點(diǎn):一是每個(gè)因式要化簡(jiǎn),二是分解因式時(shí),每個(gè)因式都要分解徹底.
五、布置作業(yè),專(zhuān)題突破
課本P171習(xí)題15.4第2、4(2)、11題.
板書(shū)設(shè)計(jì)
15.4.3 公式法(一)
1、平方差公式: 例:
a2-b2=(a+b)(a-b) 練習(xí):
15.4.3 公式法(二)
教學(xué)目標(biāo)
1.知識(shí)與技能
領(lǐng)會(huì)運(yùn)用完全平方公式進(jìn)行因式分解的方法,發(fā)展推理能力.
2.過(guò)程與方法
經(jīng)歷探索利用完全平方公式進(jìn)行因式分解的過(guò)程,感受逆向思維的意義,掌握因式分解的基本步驟.
3.情感、態(tài)度與價(jià)值觀
培養(yǎng)良好的推理能力,體會(huì)“化歸”與“換元”的思想方法,形成靈活的應(yīng)用能力.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):理解完全平方公式因式分解,并學(xué)會(huì)應(yīng)用.
2.難點(diǎn):靈活地應(yīng)用公式法進(jìn)行因式分解.
3.關(guān)鍵:應(yīng)用“化歸”、“換元”的思想方法,把問(wèn)題進(jìn)行形式上的轉(zhuǎn)化,達(dá)到能應(yīng)用公式法分解因式的目的.
教學(xué)方法
采用“自主探究”教學(xué)方法,在教師適當(dāng)指導(dǎo)下完成本節(jié)課內(nèi)容.
教學(xué)過(guò)程
一、回顧交流,導(dǎo)入新知
【問(wèn)題牽引】
1.分解因式:
(1)-9x2+4y2; (2)(x+3y)2-(x-3y)2;
(3) x2-0.01y2.
一、說(shuō)教材
1、關(guān)于地位與作用。
今天我說(shuō)課的內(nèi)容是浙教版七年級(jí)數(shù)學(xué)下冊(cè)第六章《因式分解》第四節(jié)課的內(nèi)容。因式分解是代數(shù)式的一種重要恒等變形,它是學(xué)習(xí)分式的基礎(chǔ),又在恒等變形、代數(shù)式的運(yùn)算、解方程、函數(shù)中有廣泛的應(yīng)用。就本節(jié)課而言,著重闡述了三個(gè)方面,一是因式分解在簡(jiǎn)單的多項(xiàng)式除法的應(yīng)用;二是利用因式分解求解簡(jiǎn)單的一元二次方程;三是因式分解在數(shù)學(xué)應(yīng)用問(wèn)題中的綜合運(yùn)用。通過(guò)本節(jié)課的學(xué)習(xí),不僅使學(xué)生鞏固因式分解的概念和原理,而且又為后面代數(shù)的學(xué)習(xí)作好了充分的準(zhǔn)備。
2、關(guān)于教學(xué)目標(biāo)。
根據(jù)這一節(jié)課的內(nèi)容,對(duì)于因式分解的應(yīng)用在整個(gè)代數(shù)教學(xué)中的地位和作用,我制定了以下教學(xué)目標(biāo):
(一)知識(shí)目標(biāo):
①會(huì)用平方差公式和完全平方公式分解因式;
②會(huì)用因式分解進(jìn)行簡(jiǎn)單的多項(xiàng)式除法及求解簡(jiǎn)單的一元二次方程。
(二)能力目標(biāo):
①初步會(huì)綜合運(yùn)用因式分解知識(shí)解決一些簡(jiǎn)單的數(shù)學(xué)應(yīng)用問(wèn)題;
②培養(yǎng)分工協(xié)作及合作能力,鍛煉學(xué)生的語(yǔ)言表達(dá)及用數(shù)學(xué)語(yǔ)言的能力。
③ 培養(yǎng)學(xué)生觀察、分析、歸納的能力,并向?qū)W生滲透對(duì)比、類(lèi)比的數(shù)學(xué)思想方法。
(三) 情感目標(biāo):
培養(yǎng)學(xué)生積極主動(dòng)參與的意識(shí),使學(xué)生形成自主學(xué)習(xí)、合作學(xué)習(xí)的良好的學(xué)習(xí)習(xí)慣。并且讓學(xué)生明確數(shù)學(xué)學(xué)習(xí)的重要性,讓學(xué)生在利用數(shù)學(xué)知識(shí)解決生活實(shí)際問(wèn)題中體驗(yàn)快樂(lè)。
3、關(guān)于教學(xué)重點(diǎn)與難點(diǎn)。
本節(jié)課利用因式分解知識(shí)解決問(wèn)題是學(xué)習(xí)的關(guān)鍵,因此我將本課的學(xué)習(xí)重點(diǎn)、難點(diǎn)確定為:
學(xué)習(xí)的重點(diǎn):
①會(huì)用平方差公式和完全平方公式分解因式;
②會(huì)用因式分解進(jìn)行簡(jiǎn)單的多項(xiàng)式除法及求解簡(jiǎn)單的一元二次方程。
學(xué)習(xí)的難點(diǎn):
①因式分解過(guò)程中出現(xiàn)的符號(hào)問(wèn)題,整體思想和換元思想的應(yīng)用。
②綜合運(yùn)用因式分解知識(shí)解決數(shù)學(xué)應(yīng)用問(wèn)題。
4、關(guān)于教法與學(xué)法。
學(xué)情分析:
①七年級(jí)學(xué)生對(duì)于代數(shù)式的運(yùn)算較之有理數(shù)運(yùn)算有較大的困難,由于因式分解是乘法運(yùn)算的逆運(yùn)算,有部分學(xué)生對(duì)于此概念容易混淆
②對(duì)于平方差公式和完全平方公式,有部分學(xué)生容易在應(yīng)用時(shí)混淆。
③對(duì)于一元二次方程求解問(wèn)題,學(xué)生是初次接觸,對(duì)于方程的根的情況較難理解。
④因式分解的綜合應(yīng)用上學(xué)生困難較大。
教法與學(xué)法是互相和統(tǒng)一的,正如新《數(shù)學(xué)課程標(biāo)準(zhǔn)》所要求的,讓學(xué)生“動(dòng)手實(shí)踐、自主探索、合作交流 ”。就本節(jié)課而言,根據(jù)學(xué)生在學(xué)習(xí)中可能出現(xiàn)的困難,本節(jié)課在教學(xué)中主要采用“嘗試教學(xué)法”,以學(xué)生為主體,以親身體驗(yàn)為主線,教師在課堂中主要起到點(diǎn)撥和組織作用。利用嘗試教學(xué),讓學(xué)生主動(dòng)暴露思維過(guò)程,及時(shí)得到信息的反饋。
注:不管用什么教法,一節(jié)課應(yīng)該不斷研究學(xué)生的學(xué)習(xí)心理機(jī)制,不斷優(yōu)化教師本身的教學(xué)行為,自始至終對(duì)學(xué)生充滿(mǎn)情感、創(chuàng)造和諧的課堂氛圍,這是最重要的。
教學(xué)思想:整體思想和換元思想的體現(xiàn)。
二、教學(xué)過(guò)程:
本節(jié)課,一共設(shè)以下幾個(gè)環(huán)節(jié)
第一環(huán)節(jié),設(shè)置問(wèn)題,復(fù)習(xí)回顧:
興趣是最好的老師,可以激發(fā)情感,喚起某種動(dòng)機(jī),從而引導(dǎo)學(xué)生成為學(xué)習(xí)的主人。初一學(xué)生在學(xué)習(xí)過(guò)程中,能積極地、主動(dòng)地去探討問(wèn)題,這是學(xué)習(xí)成功地一個(gè)保障。
小小考場(chǎng): 利用多媒體課件,依次出示
(1)a2+a (2)a2–4; (3)a2+2a+1
說(shuō)明:① 鞏固因式分解的兩種基本解法;
②復(fù)習(xí)鞏固兩個(gè)基本公式。
第二環(huán)節(jié), 嘗試練一練:(預(yù)設(shè)題)
① a2÷(-a ) ② (a2+a)÷a
③ (xy2—2xy)÷(y—2) ④ (9a2—4)÷(2—3a)
說(shuō)明:1、本題前兩小題可請(qǐng)學(xué)生口答,后兩題請(qǐng)兩位同學(xué)上黑板板演其他同學(xué)自己先做,然后糾正黑板上的錯(cuò)誤。
2、通過(guò)預(yù)設(shè)題,層層遞進(jìn),為例題的理解作了個(gè)鋪墊,降低了本節(jié)課的難點(diǎn),可以讓學(xué)生自己理解書(shū)本例1。
3、請(qǐng)同學(xué)及時(shí)歸納用因式分解解決代數(shù)式的除法的方法和步驟:
①對(duì)每一個(gè)能因式分解的多項(xiàng)式進(jìn)行因式分解;
②約去相同的部分;
③注意符號(hào)問(wèn)題,整體思想的應(yīng)用 。
4、安排這一過(guò)程的意圖是:通過(guò)嘗試教學(xué),引導(dǎo)學(xué)生主動(dòng)探求,造求學(xué)生自主學(xué)習(xí)的積極勢(shì)態(tài),通過(guò)一定的練習(xí),達(dá)到知覺(jué)水平上的運(yùn)用,加深學(xué)生對(duì)因式分解概念的理解,從而突出本節(jié)課的重點(diǎn)。
第三環(huán)節(jié),開(kāi)動(dòng)小火車(chē)(填空)
1、(a2—4)÷(a+2)= 2、(x2+2xy+y2)÷(x+y)=
3、 (ab2+a2b)÷(a+b)= 4、(x2—49)÷(7—x)=
說(shuō)明:本題先給學(xué)生3~5鐘思考,采用開(kāi)動(dòng)小火車(chē)形式既訓(xùn)練了學(xué)生的解題速度又是對(duì)例1的及時(shí)鞏固。
第四環(huán)節(jié),合作探索,共同發(fā)現(xiàn):
以四人一組分小組討論書(shū)本的合作學(xué)習(xí)內(nèi)容,并請(qǐng)幾個(gè)小組代表發(fā)表見(jiàn)解,對(duì)于學(xué)生的發(fā)言應(yīng)盡量鼓勵(lì)。
分析:由AB=0可知A=0或B=0,利用此結(jié)論解方程(2x+3)(2x—3)=0可得2x+3=0或2x—3=0。
第五環(huán)節(jié),例題精析:
例、(2x-1)2=(x+2)2
分析:本例的教學(xué)是本節(jié)課的一個(gè)難點(diǎn),首先,給學(xué)生一定的時(shí)間思考討論,教師適當(dāng)引導(dǎo)學(xué)生思對(duì)于本題的求解教師可板書(shū)過(guò)程,并強(qiáng)調(diào)利用因式分解求解簡(jiǎn)單的一元二次方程的步驟和注意點(diǎn):
①求解原理是:由AB=0可知A=0或B=0。
②先移項(xiàng),注意移項(xiàng)后要變號(hào),等號(hào)右邊為0。
③利用整體思想和換元思想因式分解。
④注意方程根的表示方法。
第六環(huán)節(jié),比一比,賽一賽 ,看誰(shuí)最棒:
1、(4mn3-6m3n)÷(2n2+3m2) 2、[(2a-1)2-(3a-1)2]÷(5a-2)
3、49x2-25=0 4、(3x-2)2=(1-5x)2
突破重點(diǎn),鞏固提高.
第七環(huán)節(jié),探索提高,提升自我:
1、 已知:| x + y + 1| +| xy - 3 | = 0 求代數(shù)式xy3 + x3y 的值。
2、把偶數(shù)按從小到大的順序排列,相鄰的兩個(gè)偶數(shù)的平方差(較大的減去較小的)一定是4的倍數(shù)嗎?是否可能有比4大的偶數(shù)因數(shù)?
說(shuō)明:教師安排這一過(guò)程意圖就是引導(dǎo)學(xué)生進(jìn)行分析討論,鼓勵(lì)學(xué)生勤于思考,各抒己見(jiàn),培養(yǎng)學(xué)生的邏輯思維能力和表達(dá)、交流能力。
第八環(huán)節(jié), 知識(shí)整理,歸納小結(jié)。
這一部分可由學(xué)生自行小結(jié),盡可能說(shuō)明本節(jié)課的收獲,教師可適當(dāng)補(bǔ)充。教師安排這一過(guò)程意圖是:由學(xué)生自行小結(jié),點(diǎn)燃學(xué)生主題意識(shí)的再度爆發(fā)。同時(shí),學(xué)生的知識(shí)學(xué)習(xí)得到了自我評(píng)價(jià)和鞏固,成為本節(jié)課的最后一個(gè)亮點(diǎn)。
第九環(huán)節(jié),作業(yè)布置:
1、書(shū)本作業(yè)題,作業(yè)本。
2、興趣題:手工課上,老師又給同學(xué)們發(fā)了3張正方形紙片,3張長(zhǎng)方形紙片,請(qǐng)你將它們拼成一個(gè)長(zhǎng)方形,并運(yùn)用面積之間的關(guān)系,將多項(xiàng)式2a2+3ab+b2 因式分解
教師意圖:讓學(xué)生鞏固所學(xué)內(nèi)容并進(jìn)行自我檢測(cè)與評(píng)價(jià),考慮到學(xué)生基礎(chǔ)的差異性,作業(yè)進(jìn)行分層次要求。興趣題可滿(mǎn)足學(xué)有余力的學(xué)生的求知欲望,提高他們對(duì)因式分解的技能和技巧。
三、板書(shū)設(shè)計(jì):板書(shū)主要分課題、投影區(qū)和注意要點(diǎn)區(qū)。
四、關(guān)于教學(xué)設(shè)計(jì):
由于本節(jié)課的重要性,對(duì)于本節(jié)課的設(shè)計(jì)主要強(qiáng)調(diào)“雙基”,使學(xué)生的認(rèn)知水平在原有的知識(shí)基礎(chǔ)上有所提高,整堂課應(yīng)以學(xué)生為主體,對(duì)于學(xué)生出現(xiàn)的錯(cuò)誤,教師應(yīng)給予正確的引導(dǎo),并積極鼓勵(lì)學(xué)生在課堂中體現(xiàn)自我,在數(shù)學(xué)學(xué)習(xí)中體驗(yàn)快樂(lè)。
1問(wèn)好
尊敬的各位評(píng)委老師,大家好?。ň瞎┪沂墙裉斓?號(hào)考生,我說(shuō)課的題目是《用因式分解法求解一元二次程》,下面開(kāi)始我的說(shuō)課。
2總括語(yǔ)
為了處理好教與學(xué)的關(guān)系,突出數(shù)學(xué)課標(biāo)的教學(xué)理念,在講授過(guò)程中我既要做到精講精練,又要放手引導(dǎo)學(xué)生參與嘗試和討論,展開(kāi)思維活動(dòng)。因此,本節(jié)課力爭(zhēng)促進(jìn)學(xué)生學(xué)習(xí)方式的轉(zhuǎn)變,由被動(dòng)聽(tīng)講式學(xué)習(xí)轉(zhuǎn)變?yōu)榉e極主動(dòng)地探索發(fā)現(xiàn)式學(xué)習(xí)。下面,我主要從教材分析、教學(xué)目標(biāo)、學(xué)情分析、教法學(xué)法、教學(xué)過(guò)程和板書(shū)設(shè)計(jì)這六個(gè)方面展開(kāi)我的說(shuō)課。
3教材分析
教材是進(jìn)行教學(xué)評(píng)判的依據(jù),是學(xué)生獲取知識(shí)的重要來(lái)源,所以,對(duì)教材的分析尤為重要?!队靡蚴椒纸夥ㄇ蠼庖辉畏匠獭愤x自北師大版九年級(jí)上冊(cè)第二章第四節(jié),本節(jié)課的主要內(nèi)容是了解因式分解法的解題步驟,會(huì)用因式分解法解一元二次方程,在此之前學(xué)生已經(jīng)學(xué)習(xí)了整式乘法以及因式分解,為本節(jié)課學(xué)習(xí)解一元二次方程做了鋪墊,也為以后學(xué)習(xí)二次函數(shù)奠定基礎(chǔ)。
4教學(xué)目標(biāo)
為了與學(xué)生的認(rèn)知基礎(chǔ)相適應(yīng),更好展現(xiàn)知識(shí)形成和發(fā)展的過(guò)程,我確定本節(jié)課的三維教學(xué)目標(biāo)如下:
一、知識(shí)與技能目標(biāo):學(xué)生能夠了解因式分解法的解題步驟,會(huì)用因式分解法解一元二次方程,根據(jù)方程特征靈活選擇方程的解法。
二、過(guò)程與方法目標(biāo):學(xué)生逐漸學(xué)會(huì)在具體情景中從數(shù)學(xué)的角度發(fā)現(xiàn)問(wèn)題和提出問(wèn)題,提高綜合運(yùn)用數(shù)學(xué)知識(shí)和方法解決實(shí)際問(wèn)題的能力。
三、情感態(tài)度與價(jià)值觀目標(biāo):通過(guò)小組合作積極參與教學(xué)活動(dòng),學(xué)生可以樹(shù)立對(duì)數(shù)學(xué)的好奇心和求知欲,養(yǎng)成敢于質(zhì)疑、勇于創(chuàng)新、合作交流的學(xué)習(xí)習(xí)慣。
基于以上對(duì)教材和教學(xué)目標(biāo)的分析,本節(jié)課的教學(xué)重點(diǎn)是了解因式分解法的解題步驟,會(huì)用因式分解法解一元二次方程,教學(xué)難點(diǎn)是理解因式分解法解一元二次方程的基本思想。
5學(xué)情分析
為了保證教學(xué)有針對(duì)性,教師不僅要對(duì)教材進(jìn)行分析,更要對(duì)學(xué)生的情況有清晰明了的掌握,這樣才能做到因材施教。九年級(jí)學(xué)生以抽象邏輯思維為主,他們樂(lè)于參與課堂,更渴望得到教師的關(guān)注,有強(qiáng)烈的好勝心,因此我會(huì)有組織、有目的、有針對(duì)性的引導(dǎo)學(xué)生參與到學(xué)習(xí)活動(dòng)中,幫助學(xué)生真正成為學(xué)習(xí)的主人。
6教法學(xué)法
數(shù)學(xué)是一門(mén)發(fā)展思維的重要學(xué)科,為了更好貫徹?cái)?shù)學(xué)新課標(biāo)的要求,我采用小組合作討論法,并輔之以問(wèn)答和講授的教學(xué)方法。在指導(dǎo)學(xué)生學(xué)習(xí)方法和培養(yǎng)學(xué)習(xí)能力方面,我將引導(dǎo)學(xué)生采用自主學(xué)習(xí)和合作探究的學(xué)法。這種教學(xué)理念緊隨新課改理念也反映了時(shí)代精神。
7教學(xué)過(guò)程
以上所有的準(zhǔn)備都是為了課堂的完美呈現(xiàn),結(jié)合學(xué)生的認(rèn)知特點(diǎn),我將設(shè)計(jì)如下教學(xué)過(guò)程:
導(dǎo)入
精彩的導(dǎo)入可以激發(fā)學(xué)生的學(xué)習(xí)動(dòng)機(jī),培養(yǎng)學(xué)習(xí)興趣,從而達(dá)到事半功倍的效果,因此我將采用如下方式進(jìn)行導(dǎo)入:同學(xué)們請(qǐng)看大屏幕,王莊村在測(cè)量土地時(shí),發(fā)現(xiàn)了一塊正方形的土地和一塊矩形的土地,矩形土地的寬和正方形的邊長(zhǎng)相等,矩形土地的長(zhǎng)為80m,工作人員說(shuō):“正方形土地的面積是矩形面積的一半?!闭l(shuí)能幫助工作人員計(jì)算一下正方形土地的面積嗎?我看到同學(xué)們臉上露出了疑惑的表情,帶著這個(gè)問(wèn)題進(jìn)入我們今天的課堂《用因式分解法求解一元二次方程》。這樣通過(guò)生活實(shí)際問(wèn)題引入,可以激發(fā)學(xué)生好奇探索、主動(dòng)學(xué)習(xí)的欲望。
新授
接下來(lái)進(jìn)入新授環(huán)節(jié),此環(huán)節(jié)我設(shè)計(jì)如下活動(dòng):
我會(huì)先帶領(lǐng)同學(xué)們根據(jù)題意列式,同學(xué)們?cè)谥皩W(xué)習(xí)的基礎(chǔ)之上,不難得出a=80a,但是對(duì)于解決這個(gè)問(wèn)題略有難度,因此我會(huì)組織同學(xué)們采用小組討論的方式,給同學(xué)們5分鐘時(shí)間,鼓勵(lì)同學(xué)們采用多種方法就解決問(wèn)題。討論過(guò)程中,我會(huì)走下講臺(tái),參與同學(xué)們的討論。討論結(jié)束后,有的小組用公式法得到答案;有的小組用的是等式的性質(zhì),但是,考慮不全面,所以錯(cuò)誤;還有小組是將方程轉(zhuǎn)化成兩個(gè)因式乘積的形式a(a-80)=0,結(jié)果正確。在此活動(dòng)中引導(dǎo)學(xué)生共同交流,鍛煉合作探究能力和思維能力。
根據(jù)上述結(jié)論,我會(huì)拋出問(wèn)題:該小組的做題思路是什么?他們的思路用到我們以前學(xué)的什么知識(shí)點(diǎn)?組織小組繼續(xù)合作討論并進(jìn)行比較歸納,經(jīng)過(guò)激烈討論之后找小組代表總結(jié)可得:基本思路是:以b代替a-80,若ab=0,則a=0或b=0。當(dāng)一元二次方程的一邊為0,而另一邊易于分解成兩個(gè)一次因式的乘積時(shí),我們可以用因式分解的方法求解。因式分解法關(guān)鍵是熟練掌握因式分解的知識(shí),在此過(guò)程充分體現(xiàn)了學(xué)生主體,教師主導(dǎo)的理念,有效突破重點(diǎn),增強(qiáng)學(xué)習(xí)興趣。
為了學(xué)生能夠進(jìn)一步掌握因式分解法,我會(huì)在多媒體上出示如下方程:5X=4X,并進(jìn)行演示具體解題步驟,引導(dǎo)學(xué)生歸納總結(jié)出因式分解法的基本步驟為:一移-----方程的右邊等于0;二分-----方程的左邊因式分解;三化-----方程化為兩個(gè)一元一次方程;四解-----寫(xiě)出方程兩個(gè)解。這與配方法類(lèi)似,都是將一元二次方程轉(zhuǎn)化成兩個(gè)一元一次方程求解,這個(gè)環(huán)節(jié)可以進(jìn)一步提高學(xué)生分析問(wèn)題和歸納總結(jié)的能力。在對(duì)因式分解法了解之后,結(jié)合前幾種方法我會(huì)在黑板上出幾道題目,找學(xué)生上黑板練習(xí),以便于學(xué)生能夠更好的理解和運(yùn)用因式分解法。
鞏固練習(xí)是必不可少的環(huán)節(jié),為了鼓勵(lì)學(xué)生能夠?qū)⑺鶎W(xué)知識(shí)更好的應(yīng)用到實(shí)際生活中去,我會(huì)引導(dǎo)學(xué)生回顧課堂導(dǎo)入時(shí)的問(wèn)題并進(jìn)行解決,這樣設(shè)計(jì)既檢查了新知學(xué)習(xí)情況,也與實(shí)際聯(lián)系起來(lái),幫助學(xué)生認(rèn)識(shí)到數(shù)學(xué)就在自己身邊。
小結(jié)
根據(jù)艾賓浩斯遺忘曲線規(guī)律可知,及時(shí)復(fù)習(xí)效果更好,在課堂即將結(jié)束時(shí)我將以提問(wèn)的方式引導(dǎo)學(xué)生對(duì)本節(jié)課的重難點(diǎn)加以總結(jié),使知識(shí)系統(tǒng)化、概括化。
作業(yè)
最后留出本節(jié)課的作業(yè):回想一下我們學(xué)習(xí)了哪些解一元二次方程的方法?每種方法的適用類(lèi)型是什么?請(qǐng)以列表的方式進(jìn)行對(duì)比,在這個(gè)數(shù)學(xué)活動(dòng)中,學(xué)生是完全自由的學(xué)習(xí)個(gè)體。
8板書(shū)設(shè)計(jì)
板書(shū)是一堂課的精華部分,好的板書(shū)起到畫(huà)龍點(diǎn)睛的作用。以下是我的板書(shū)設(shè)計(jì):我將在黑板正上方寫(xiě)本節(jié)課的題目,主板書(shū)以思維導(dǎo)圖的方式呈現(xiàn),系統(tǒng)展示因式分解法求解一元二次方程的基本步驟:一移、二分、三化、四解。這樣的板書(shū)設(shè)計(jì)簡(jiǎn)單明了、系統(tǒng)直觀,能夠幫助學(xué)生對(duì)本節(jié)課有一個(gè)更深刻的掌握。
以上是我全部的說(shuō)課內(nèi)容,謝謝各位評(píng)委老師!
鐵樹(shù)老師網(wǎng)絡(luò)面試輔導(dǎo),喜馬拉雅app--主播--教師面試大雜燴
圖文搜集自網(wǎng)絡(luò),如有侵權(quán)請(qǐng)聯(lián)系刪除
教學(xué)目標(biāo)
1、知識(shí)與技能
會(huì)應(yīng)用平方差公式進(jìn)行因式分解,發(fā)展學(xué)生推理能力。
2、過(guò)程與方法
經(jīng)歷探索利用平方差公式進(jìn)行因式分解的過(guò)程,發(fā)展學(xué)生的逆向思維,感受數(shù)學(xué)知識(shí)的完整性。
3、情感、態(tài)度與價(jià)值觀
培養(yǎng)學(xué)生良好的互動(dòng)交流的習(xí)慣,體會(huì)數(shù)學(xué)在實(shí)際問(wèn)題中的應(yīng)用價(jià)值。
重、難點(diǎn)與關(guān)鍵
1、重點(diǎn):利用平方差公式分解因式。
2、難點(diǎn):領(lǐng)會(huì)因式分解的解題步驟和分解因式的徹底性。
3、關(guān)鍵:應(yīng)用逆向思維的方向,演繹出平方差公式,對(duì)公式的應(yīng)用首先要注意其特征,其次要做好式的變形,把問(wèn)題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來(lái)。
教學(xué)方法
采用“問(wèn)題解決”的教學(xué)方法,讓學(xué)生在問(wèn)題的牽引下,推進(jìn)自己的思維。
教學(xué)過(guò)程
一、觀察探討,體驗(yàn)新知
【問(wèn)題牽引】
請(qǐng)同學(xué)們計(jì)算下列各式。
(1)(a+5)(a—5);(2)(4m+3n)(4m—3n)。
【學(xué)生活動(dòng)】動(dòng)筆計(jì)算出上面的兩道題,并踴躍上臺(tái)板演。
(1)(a+5)(a—5)=a2—52=a2—25;
(2)(4m+3n)(4m—3n)=(4m)2—(3n)2=16m2—9n2。
【教師活動(dòng)】引導(dǎo)學(xué)生完成下面的兩道題目,并運(yùn)用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律。
1、分解因式:a2—25;2、分解因式16m2—9n。
【學(xué)生活動(dòng)】從逆向思維入手,很快得到下面答案:
(1)a2—25=a2—52=(a+5)(a—5)。
(2)16m2—9n2=(4m)2—(3n)2=(4m+3n)(4m—3n)。
【教師活動(dòng)】引導(dǎo)學(xué)生完成a2—b2=(a+b)(a—b)的同時(shí),導(dǎo)出課題:用平方差公式因式分解。
平方差公式:a2—b2=(a+b)(a—b)。
評(píng)析:平方差公式中的字母a、b,教學(xué)中還要強(qiáng)調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項(xiàng)式、多項(xiàng)式)。
二、范例學(xué)習(xí),應(yīng)用所學(xué)
【例1】把下列各式分解因式:(投影顯示或板書(shū))
(1)x2—9y2;(2)16x4—y4;
(3)12a2x2—27b2y2;(4)(x+2y)2—(x—3y)2;
(5)m2(16x—y)+n2(y—16x)。
【思路點(diǎn)撥】在觀察中發(fā)現(xiàn)1~5題均滿(mǎn)足平方差公式的特征,可以使用平方差公式因式分解。
【教師活動(dòng)】啟發(fā)學(xué)生從平方差公式的角度進(jìn)行因式分解,請(qǐng)5位學(xué)生上講臺(tái)板演。
【學(xué)生活動(dòng)】分四人小組,合作探究。
解:(1)x2—9y2=(x+3y)(x—3y);
(2)16x4—y4=(4x2+y2)(4x2—y2)=(4x2+y2)(2x+y)(2x—y);
(3)12a2x2—27b2y2=3(4a2x2—9b2y2)=3(2ax+3by)(2ax—3by);
(4)(x+2y)2—(x—3y)2=[(x+2y)+(x—3y)][(x+2y)—(x—3y)]=5y(2x—y);
(5)m2(16x—y)+n2(y—16x)
=(16x—y)(m2—n2)=(16x—y)(m+n)(m—n)。
因式分解
教材分析
因式分解是進(jìn)行代數(shù)式恒等變形的重要手段之一,因式分解是在學(xué)習(xí)整式四則運(yùn)算的基礎(chǔ)上進(jìn)行的,它不僅僅在多項(xiàng)式的除法、簡(jiǎn)便運(yùn)算中等有直接的應(yīng)用,也為以后學(xué)習(xí)分式的約分與通分、解方程(組)及三解函數(shù)式的恒等變形帶給了必要的基礎(chǔ),因此學(xué)好因式分解對(duì)于代數(shù)知識(shí)的后續(xù)學(xué)習(xí),具有相當(dāng)重要的好處。由于本節(jié)課后學(xué)習(xí)提取公因式法,運(yùn)用公式法,分組分解法來(lái)進(jìn)行因式分解,務(wù)必以理解因式分解的概念為前提,所以本節(jié)資料的重點(diǎn)是因式分解的概念。由整式乘法尋求因式分解的方法是一種逆向思維過(guò)程,而逆向思維對(duì)初一學(xué)生還比較生疏,理解起來(lái)有必須難度,再者本節(jié)還沒(méi)涉及因式分解的具體方法,所以理解因式分解與整式乘法的相互關(guān)系,并運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法是教學(xué)中的難點(diǎn)。
教學(xué)目標(biāo)
認(rèn)知目標(biāo):(1)理解因式分解的概念和好處
(2)認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——相反變形,并會(huì)運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。
潛力目標(biāo):由學(xué)生自行探求解題途徑,培養(yǎng)學(xué)生觀察、分析、決定潛力和創(chuàng)新潛力,發(fā)展學(xué)生智能,深化學(xué)生逆向思維潛力和綜合運(yùn)用潛力。
情感目標(biāo):培養(yǎng)學(xué)生理解矛盾的對(duì)立統(tǒng)一觀點(diǎn),獨(dú)立思考,勇于探索的精神和實(shí)事求是的科學(xué)態(tài)度。
目標(biāo)制定的思想
1.目標(biāo)具體化、明確化,從學(xué)生實(shí)際出發(fā),具有針對(duì)性和可行性,同時(shí)便于上課操作,便于檢測(cè)和及時(shí)反饋。
2.課堂教學(xué)體現(xiàn)潛力立意。
3.寓德育教育于教學(xué)之中。
教學(xué)方法
1.采用以設(shè)疑探究的引課方式,激發(fā)學(xué)生的求知欲望,提高學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)用心性。
2.把因式分解概念及其與整式乘法的關(guān)系作為主線,訓(xùn)練學(xué)生思維,以設(shè)疑——感知——概括——運(yùn)用為教學(xué)程序,充分遵循學(xué)生的認(rèn)知規(guī)律,使學(xué)生能順利地掌握重點(diǎn),突破難點(diǎn),提高潛力。
3.在課堂教學(xué)中,引導(dǎo)學(xué)生體會(huì)知識(shí)的發(fā)生發(fā)展過(guò)程,堅(jiān)持啟發(fā)式,鼓勵(lì)學(xué)生充分地動(dòng)腦、動(dòng)口、動(dòng)手,用心參與到教學(xué)中來(lái),充分體現(xiàn)了學(xué)生的主動(dòng)性原則。
4.在充分尊重教材的前提下,融教材練習(xí)、想一想于教學(xué)過(guò)程中,增設(shè)了由淺入深、各不相同卻又緊密相關(guān)的訓(xùn)練題目,為學(xué)生順利掌握因式分解概念及其與整式乘法關(guān)系創(chuàng)造了有利條件。
5.改變傳統(tǒng)言傳身教的方式,利用計(jì)算機(jī)輔助教學(xué)手段進(jìn)行教學(xué),增大教學(xué)的容量和直觀性,提高教學(xué)效率和教學(xué)質(zhì)量。
教學(xué)過(guò)程安排
一、提出問(wèn)題,創(chuàng)設(shè)情境
問(wèn)題:看誰(shuí)算得快?(計(jì)算機(jī)出示問(wèn)題)
(1)若a=101,b=99,則a2—b2=(a+b)(a—b)=(101+99)(101—99)=400
(2)若a=99,b=—1,則a2—2ab+b2=(a—b)2=(99+1)2=10000
(3)若x=—3,則20x2+60x=20x(x+3)=20x(—3)(—3+3)=0
二、觀察分析,探究新知
(1)請(qǐng)每題想得最快的同學(xué)談思路,得出最佳解題方法(同時(shí)計(jì)算機(jī)出示答案)
(2)觀察:a2—b2=(a+b)(a—b)①的左邊是一個(gè)什么式子?右邊又是什么形式?
a2—2ab+b2=(a—b)2②
20x2+60x=20x(x+3)③
(3)類(lèi)比小學(xué)學(xué)過(guò)的因數(shù)分解概念,(例42=2×3×7④)得出因式分解概念。
板書(shū)課題:§7。1因式分解
1.因式分解概念:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式叫做因式分解,也叫分解因式。
三、獨(dú)立練習(xí),鞏固新知
練習(xí)
1.下列由左邊到右邊的變形,哪些是因式分解?哪些不是?為什么?(計(jì)算機(jī)演示)
①(x+2)(x—2)=x2—4
②x2—4=(x+2)(x—2)
③a2—2ab+b2=(a—b)2
④3a(a+2)=3a2+6a
⑤3a2+6a=3a(a+2)
⑥x2—4+3x=(x—2)(x+2)+3x
⑦k2++2=(k+)2
⑧x—2—1=(x—1+1)(x—1—1)
⑨18a3bc=3a2b·6ac
2.因式分解與整式乘法的關(guān)系:
因式分解
結(jié)合:a2—b2=========(a+b)(a—b)
整式乘法
說(shuō)明:從左到右是因式分解其特點(diǎn)是:由和差形式(多項(xiàng)式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點(diǎn)是:由整式積的形式轉(zhuǎn)化成和差形式(多項(xiàng)式)。
結(jié)論:因式分解與整式乘法正好相反。
問(wèn)題:你能利用因式分解與整式乘法正好相反這一關(guān)系,舉出幾個(gè)因式分解的例子嗎?
(如:由(x+1)(x—1)=x2—1得x2—1=(x+1)(x—1)
由(x+2)(x—1)=x2+x—2得x2+x—2=(x+2)(x—1)等等)
四、例題教學(xué),運(yùn)用新知:
例:把下列各式分解因式:(計(jì)算機(jī)演示)
(1)am+bm(2)a2—9(3)a2+2ab+b2
(4)2ab—a2—b2(5)8a3+b6
練習(xí)2:填空:(計(jì)算機(jī)演示)
(1)∵2xy=2x2y—6xy2
∴2x2y—6xy2=2xy
(2)∵xy=2x2y—6xy2
∴2x2y—6xy2=xy
(3)∵2x=2x2y—6xy2
∴2x2y—6xy2=2x
五、強(qiáng)化訓(xùn)練,掌握新知:
練習(xí)3:把下列各式分解因式:(計(jì)算機(jī)演示)
(1)2ax+2ay(2)3mx—6nx(3)x2y+xy2
(4)x2+—x(5)x2—0。01(6)a3—1
(讓學(xué)生上來(lái)板演)
六、變式訓(xùn)練,擴(kuò)展新知(計(jì)算機(jī)演示)
1。若x2+mx—n能分解成(x—2)(x—5),則m=,n=
2.機(jī)動(dòng)題:(填空)x2—8x+m=(x—4),且m=
七、整理知識(shí),構(gòu)成結(jié)構(gòu)(即課堂小結(jié))
1.因式分解的概念因式分解是整式中的一種恒等變形
2.因式分解與整式乘法是兩種相反的恒等變形,也是思維方向相反的兩種思維方式,因此,因式分解的思維過(guò)程實(shí)際也是整式乘法的逆向思維的過(guò)程。
3.利用2中關(guān)系,能夠從整式乘法探求因式分解的結(jié)果。
4.教學(xué)中滲透對(duì)立統(tǒng)一,以不變應(yīng)萬(wàn)變的辯證唯物主義的思想方法。
八、布置作業(yè)
1.作業(yè)本(一)中§7。1節(jié)
2.選做題:①x2+x—m=(x+3),且m=。
②x2—3x+k=(x—5),且k=。
評(píng)價(jià)與反饋
1.透過(guò)由學(xué)生自己得出因式分解概念及其與整式乘法的關(guān)系的結(jié)論,了解學(xué)生觀察、分析問(wèn)題的潛力和逆向思維潛力及創(chuàng)新潛力。發(fā)現(xiàn)問(wèn)題,及時(shí)反饋。
2.透過(guò)例題及練習(xí),了解學(xué)生對(duì)概念的理解程度和實(shí)際運(yùn)用潛力,最大限度地讓學(xué)生暴露問(wèn)題和認(rèn)知誤差,及時(shí)發(fā)現(xiàn)和彌補(bǔ)教與學(xué)中的遺漏和不足,從而及時(shí)調(diào)控教與學(xué)。
3.透過(guò)機(jī)動(dòng)題,了解學(xué)生對(duì)概念的熟練程度和思維的靈敏性、深刻性、廣闊性及探研創(chuàng)造潛力,及時(shí)評(píng)價(jià),及時(shí)矯正。
4.透過(guò)課后作業(yè),了解學(xué)生對(duì)知識(shí)的掌握狀況與綜合運(yùn)用知識(shí)及靈活運(yùn)用知識(shí)的潛力,教師及時(shí)批閱,及時(shí)反饋講評(píng),同時(shí)對(duì)個(gè)別學(xué)生面批作業(yè),能夠更及時(shí)、更準(zhǔn)確地了解學(xué)生思維發(fā)展的狀況,矯正的針對(duì)性更強(qiáng)。
5.透過(guò)課堂小結(jié),了解學(xué)生對(duì)概念的熟悉程度和歸納概括潛力、語(yǔ)言表達(dá)潛力、知識(shí)運(yùn)用潛力,教師恰當(dāng)?shù)亟o予引導(dǎo)和啟迪。
6.課堂上反饋信息除了語(yǔ)言和練習(xí)外,學(xué)生神情也是信息來(lái)源,而且這些信息更真實(shí)。學(xué)生神態(tài)、表情、坐姿都反映出學(xué)生對(duì)教師教學(xué)資料的理解和理解程度。教師應(yīng)用心捕捉學(xué)生在知識(shí)掌握、思維發(fā)展、潛力培養(yǎng)等各方面全方位的反饋信息,隨時(shí)評(píng)價(jià),及時(shí)矯正,隨時(shí)調(diào)節(jié)教學(xué)。
一、案例背景
現(xiàn)代教育理論認(rèn)為,教師為主導(dǎo),學(xué)生為主體,教師應(yīng)當(dāng)充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)用心性,使之主動(dòng)地探索、研究,讓學(xué)生都參與到課堂活動(dòng)中,透過(guò)學(xué)生自我感受,培養(yǎng)學(xué)生觀察、分析、歸納的潛力,逐步提高自學(xué)潛力,獨(dú)立思考的潛力,發(fā)現(xiàn)問(wèn)題和解決問(wèn)題的潛力,逐漸養(yǎng)成良好的個(gè)性品質(zhì)。
因式分解是代數(shù)式的一種重要恒等變形。它是學(xué)習(xí)分式的基礎(chǔ),又在恒等變形、代數(shù)式的運(yùn)算、解方程、函數(shù)中有廣泛的應(yīng)用。
二、案例分析
教學(xué)過(guò)程設(shè)計(jì)
(一)『情境引入』
情境一:如何計(jì)算375×2。8+375×4。9+375×2。3你是怎樣想的
問(wèn)題:為什么375×2。8+375×4。9+375×2。3能夠?qū)懗?75×(2。4+4。9+2。3)依據(jù)是什么
【評(píng)析】:(1)、復(fù)習(xí)舊知,加深記憶,同時(shí)為下面的學(xué)習(xí)作鋪墊。
(2)、學(xué)生對(duì)這樣的問(wèn)題有興趣,能迅速找出一些不同的速算方法,很快想出乘法分配律的逆向變形,設(shè)置這樣的情境,由數(shù)推廣到式,效率較高。還為新課資料的學(xué)習(xí)創(chuàng)設(shè)了良好的情緒和氛圍。
情境二:分析比較
把單項(xiàng)式乘多項(xiàng)式的乘法法則
a(b+c+d)=ab+ac+ad①
反過(guò)來(lái),就得到
ab+ac+ad=a(b+c+d)②
思考(1)你是怎樣認(rèn)識(shí)①式和②式之間的關(guān)系的
(2)②式左邊的多項(xiàng)式的每一項(xiàng)有相同的因式嗎你能說(shuō)出這個(gè)因式嗎
【評(píng)析】:(1)、探索因式分解的方法,事實(shí)上是對(duì)整式乘法的再認(rèn)識(shí),因此,在教學(xué)過(guò)程中,教師要借助學(xué)生已有的整式乘法運(yùn)算的基礎(chǔ),給他們留下充分探索與交流的時(shí)間和空間,讓他們經(jīng)歷從整式乘法到因式分解的這種互逆變形的過(guò)程。
(2)、本題注重培養(yǎng)學(xué)生觀察、分析、歸納的潛力,并向?qū)W生滲透比較、類(lèi)比的數(shù)學(xué)思想方法。
(二)『探究因式分解』
1、認(rèn)識(shí)公因式
(1)、【概念1】:多項(xiàng)式ab+ac+ad的各項(xiàng)ab、ac、ad都內(nèi)含相同的因式a,稱(chēng)為多項(xiàng)式各項(xiàng)的公因式。
(2)、議一議
下列多項(xiàng)式的各項(xiàng)是否有公因式如果有,試找出公因式。
①多項(xiàng)式a2b+ab2的公因式是ab,……公因式是字母;
②多項(xiàng)式3x2—3y的公因式是3,……公因式是數(shù)字系數(shù);
③多項(xiàng)式3x2—6x3的公因式是3x2,……公因式是數(shù)學(xué)系數(shù)與字母的乘積。
分析并猜想
確定一個(gè)多項(xiàng)式的公因式時(shí),要從和兩方面,分別進(jìn)行思考。
①如何確定公因式的數(shù)字系數(shù)
②如何確定公因式的字母字母的指數(shù)怎樣定
練一練:寫(xiě)出下列多項(xiàng)式各項(xiàng)的公因式
(1)8x—16(2)2a2b—ab2
(3)4x2—2x(4)6m2n—4m3n3—2mn
【評(píng)析】:(1)、教師不要直接給出找多項(xiàng)式公因式的方法和解釋?zhuān)枪膭?lì)學(xué)生自主探索,根據(jù)自己的體驗(yàn)來(lái)積累找公因式的方法和經(jīng)驗(yàn),并能透過(guò)相互間的交流來(lái)糾正解題中的常見(jiàn)錯(cuò)誤。
(2)、對(duì)公因式的理解是因式分解的基礎(chǔ),所以在解決這個(gè)問(wèn)題時(shí)要注意配以練習(xí),個(gè)性是多次方及系數(shù)的公因式,要讓學(xué)生注意。
(3)、找公因式的一般步驟可歸納為:一看系數(shù)二看字母三看指數(shù)。
2、認(rèn)識(shí)因式分解
【概念2】:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式的叫做把這個(gè)多項(xiàng)式因式分解。
(課本)P71練一練第1題
(1)、下列各式由左邊到右邊的變形,哪些是因式分解,哪些不是
①。ab+ac+d=a(b+c)+d
②。a2—1=(a+1)(a—1)
③。(a+1)(a—1)=a2—1
(2)、你認(rèn)為提公因式法分解因式和單項(xiàng)式乘多項(xiàng)式這兩種變形是怎樣的關(guān)系從中你得到什么啟發(fā)
【評(píng)析】:(1)、本題主要是為了加深學(xué)生對(duì)因式分解概念的理解,使學(xué)生清楚因式分解的結(jié)果應(yīng)是整式乘積的形式。
(2)、教師安排本題意圖就是引導(dǎo)學(xué)生進(jìn)行分析討論,鼓勵(lì)學(xué)生勤于思考,各抒己見(jiàn),培養(yǎng)學(xué)生的邏輯思維潛力和表達(dá)、交流潛力。讓學(xué)生在主動(dòng)學(xué)習(xí)中掌握了因式分解是整式乘法的互逆的過(guò)程,以及理解利用它們之間的關(guān)系進(jìn)行因式分解的這種思想,從而降低了本節(jié)課的難點(diǎn)。
(三)『例題研究』
例1:把下列各式分解因式
(1)6a3b—9a2b2c(2)—2m3+8m2—12m
解:(1)6a3b—9a2b2c
=3a2b·2a—3a2b·3bc(找公因式,把各項(xiàng)分成公因式與一個(gè)單項(xiàng)式的乘積的形式)
=3a2b(2a—3bc)(提取公因式)
(2)—2m3+8m2—12m
=—(2m·m2—2m·4m+2m·6)(首項(xiàng)符號(hào)為負(fù),先將多項(xiàng)式放在帶負(fù)號(hào)的括號(hào)內(nèi),注意放入括號(hào)中各項(xiàng)符號(hào)的變化。)
=—2m(m2—4m+6)(提取公因式)
【評(píng)析】:(1)、因式分解的概念和好處需要學(xué)生多層次的感受,教師不要期望一次透徹的講解和分析就能讓學(xué)生完全掌握。這時(shí)先讓學(xué)生進(jìn)行初步的感受,再透過(guò)不同形式的練習(xí)增強(qiáng)對(duì)概念的理解例。
(2)、教師在講解例題時(shí),應(yīng)鼓勵(lì)學(xué)生自己動(dòng)手找公因式,讓學(xué)生透過(guò)動(dòng)手動(dòng)腦、實(shí)際操作,教師可在下面收集錯(cuò)誤,再加以點(diǎn)評(píng),加深對(duì)因式分解方法的理解。
(3)、教學(xué)中教師不能簡(jiǎn)單地要求學(xué)生記憶運(yùn)算法則,更要重視學(xué)生對(duì)算理的理解,讓學(xué)生嘗試說(shuō)出每一步運(yùn)算的道理,有意識(shí)地培養(yǎng)學(xué)生有條理地思考和語(yǔ)言表達(dá)潛力。
本題的易錯(cuò)點(diǎn):
(1)、漏項(xiàng):提公因式后括號(hào)中的項(xiàng)數(shù)應(yīng)與原多項(xiàng)式的項(xiàng)數(shù)一樣,這樣可檢查是否漏項(xiàng)。
(2)、符號(hào):由于添括號(hào)法則在上學(xué)期沒(méi)有涉及,所以有必要在此處強(qiáng)調(diào),添括號(hào)法則:括號(hào)前面是“+”號(hào),括到括號(hào)里的各項(xiàng)都不變號(hào);括號(hào)前面是“—”號(hào),括到括號(hào)里的`各項(xiàng)都要變號(hào)。
(四)『鞏固練習(xí)』
練一練:辨別下列因式分解的正誤
(1)8a3b2—12ab4+4ab=4ab(2a2b—3b3)
(2)4x2—12x3=2x2(2—6x)
(3)a3—a2=a2(a—1)=a3—a2
解(1)錯(cuò)誤,分解因式后,括號(hào)內(nèi)的多項(xiàng)式的項(xiàng)數(shù)漏掉了一項(xiàng)。
(2)錯(cuò)誤,分解因式后,括號(hào)內(nèi)的多項(xiàng)式中仍有公因式。
(3)錯(cuò)誤,分解因式后,又回到到了整式的乘法。
【評(píng)析】:(1)、這些多是學(xué)生易錯(cuò)的,本題設(shè)置的目的是讓學(xué)生運(yùn)用例1的成果準(zhǔn)確辨別因式分解中的常見(jiàn)錯(cuò)誤,對(duì)因式分解的認(rèn)識(shí)更加清晰。本例仍采用小組討論、交流的方式,讓學(xué)生都參與到課堂活動(dòng)中。
(2)、當(dāng)多項(xiàng)式的某一項(xiàng)恰好是公因式時(shí),這一項(xiàng)應(yīng)看成它與1的乘積,提公因式后剩下的應(yīng)是1。1作為項(xiàng)的系數(shù)通常可省略,但如果單獨(dú)成一項(xiàng)時(shí),它在因式分解時(shí)不能漏項(xiàng)。
(3)、進(jìn)行多項(xiàng)式分解因式時(shí),務(wù)必把每一個(gè)因式都分解到不能分解為止。
(4)、教師安排這一過(guò)程,完全放手讓學(xué)生自主進(jìn)行,充分暴露學(xué)生的思維過(guò)程,展現(xiàn)學(xué)生生動(dòng)活潑、主動(dòng)求知和富有的個(gè)性,使學(xué)生真正成為學(xué)習(xí)的主體,使因式分解與整式的乘法的關(guān)系得到真正強(qiáng)化,也分散了本節(jié)課的難點(diǎn)。
(五)『想一想』:
如何把多項(xiàng)式3a(x+y)—2b(x+y)分解因式
解:3a(x+y)—2b(x+y)=(x+y)(3a—2b)
評(píng)析:公因式(x+y)是多項(xiàng)式,屬較高要求,當(dāng)多項(xiàng)式中有相同的整體(多項(xiàng)式)時(shí),不要把它拆開(kāi),提取公因式時(shí)把它整體提出來(lái),有時(shí)還需要做適當(dāng)變形,如:(2—a)=—(a—2),教學(xué)時(shí)可初步滲透換元思想,將換元思想引入因式分解,可使問(wèn)題化繁為簡(jiǎn)。
【概念3】把多項(xiàng)式化成公因式與另一個(gè)多項(xiàng)式的積的形式,這種分解因式的方法叫做提公因式法。
初中因式分解教學(xué)反思
1、本節(jié)課根據(jù)學(xué)生的知識(shí)結(jié)構(gòu),采用的教學(xué)流程是:提出問(wèn)題—實(shí)際操作—?dú)w納方法—課堂練習(xí)—課堂小結(jié)—布置作業(yè)六部分,這一流程體現(xiàn)了知識(shí)發(fā)生、構(gòu)成和發(fā)展的過(guò)程,讓學(xué)生進(jìn)一步發(fā)展觀察、歸納、類(lèi)比、概括、逆向思考等潛力,發(fā)展有條理思考及語(yǔ)言表達(dá)潛力;
2、分解因式是一種變形,變形的結(jié)果應(yīng)是整式的積的形式,分解因式與整式的乘法是互逆關(guān)系,即把分解因式看作是一個(gè)變形的過(guò)程,那么整式乘法又是分解因式的逆過(guò)程,這種互逆關(guān)系一方面體現(xiàn)二者之間的密切聯(lián)系,另一方面又說(shuō)明了二者之間的根本區(qū)別。探索因式分解的方法,事實(shí)上是對(duì)整式乘法的再認(rèn)識(shí),因此,在教學(xué)過(guò)程中,教師要借助學(xué)生已有的整式乘法運(yùn)算的基礎(chǔ),給學(xué)生帶給豐富搞笑的問(wèn)題情境,并給他們留下充分探索與交流的時(shí)間和空間,讓他們經(jīng)歷從整式乘法到因式分解的這種互逆變形的過(guò)程;
3、在提公因式方面,學(xué)生對(duì)公因式的認(rèn)識(shí)不足,對(duì)提公因式的要求不清楚,造成了學(xué)生在做分解因式時(shí)出現(xiàn)了以下錯(cuò)誤:
(1)公因式找錯(cuò);
(2)公因式找不完整(如:漏掉公因式的系數(shù)(或系數(shù)不是取各項(xiàng)系數(shù)的最大公約數(shù))、公因式中內(nèi)含多項(xiàng)式時(shí),漏掉系數(shù)或字母因數(shù)),導(dǎo)致因式分解不徹底;
4、由于在七年級(jí)上冊(cè)教材中沒(méi)有涉及添括號(hào)法則,所以學(xué)生在分解第一項(xiàng)系數(shù)是負(fù)數(shù)的多項(xiàng)式時(shí),出現(xiàn)了很多符號(hào)錯(cuò)誤;
因式分解是一個(gè)重點(diǎn),也是一個(gè)難點(diǎn),以上存在問(wèn)題在以后的教學(xué)中有待進(jìn)一步加強(qiáng)。
第6.4因式分解的.簡(jiǎn)單應(yīng)用
背景材料:
因式分解是初中數(shù)學(xué)中的一個(gè)重點(diǎn)內(nèi)容,也是一項(xiàng)重要的基本技能和基礎(chǔ)知識(shí),更是一種數(shù)學(xué)的變形方法,在今后的學(xué)習(xí)中有著重要的作用。因此,除了單純的因式分解問(wèn)題外,因式分解在解某些數(shù)學(xué)問(wèn)題中有著廣泛的作用,因式分解在三角形中的應(yīng)用,因式分解可以用來(lái)證明代數(shù)問(wèn)題,用于代數(shù)式的求值,用于求不定方程,用于解應(yīng)用題解決有關(guān)復(fù)雜數(shù)值的計(jì)算,本節(jié)課的例題因式分解在數(shù)學(xué)題中的簡(jiǎn)單應(yīng)用。
教材分析:
本節(jié)課是本章的最后一節(jié),是學(xué)生學(xué)習(xí)因式分解初步應(yīng)用,首先要使學(xué)生體會(huì)到因式分解在數(shù)學(xué)中應(yīng)用,其次給學(xué)生提供更多機(jī)會(huì)體驗(yàn)主動(dòng)學(xué)習(xí)和探索的“過(guò)程”與“經(jīng)歷”,使多數(shù)學(xué)里擁有一定問(wèn)題解決的經(jīng)驗(yàn)。
教學(xué)目標(biāo):
1、在整除的情況下,會(huì)應(yīng)用因式分解,進(jìn)行多項(xiàng)式相除。
2、會(huì)應(yīng)用因式分解解簡(jiǎn)單的一元二次方程。
3、體驗(yàn)數(shù)學(xué)問(wèn)題中的矛盾轉(zhuǎn)化思想。
4、培養(yǎng)觀察和動(dòng)手能力,自主探索與合作交流能力。
教學(xué)重點(diǎn):
學(xué)會(huì)應(yīng)用因式分解進(jìn)行多項(xiàng)式除法和解簡(jiǎn)單一元二次方程。
教學(xué)難點(diǎn):
應(yīng)用因式分解解簡(jiǎn)單的一元二次方程。
設(shè)計(jì)理念:
根據(jù)本節(jié)課的內(nèi)容特點(diǎn),主要采用師生合作控討式課堂教學(xué)方法,以教師為主導(dǎo),學(xué)生為主體,動(dòng)手實(shí)踐訓(xùn)練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標(biāo),引導(dǎo)學(xué)生自主探索,動(dòng)手實(shí)踐,合作交流。注重使學(xué)生經(jīng)辦觀察、操作、推理等探索過(guò)程。這種教學(xué)理念,反映了時(shí)代精神,有利于提高學(xué)生的數(shù)學(xué)素養(yǎng),能有效地激發(fā)學(xué)生的思維積極性,學(xué)生在學(xué)習(xí)過(guò)程中調(diào)動(dòng)各種感官,進(jìn)行觀察與抽象、操作與思考、自主與交流等,進(jìn)而改進(jìn)學(xué)生的學(xué)習(xí)方法。
教學(xué)過(guò)程:
一、創(chuàng)設(shè)情境,復(fù)習(xí)提問(wèn)
1、將正式各式因式分解
(1)(a+b)2-10(a+b)+25 (2)-xy+2x2y+x3y
(3)2 a2b-8a2b (4)4x2-9
[四位同學(xué)到黑板上演板,本課時(shí)用復(fù)習(xí)“練習(xí)引入”也不失為一種好方法,既先復(fù)習(xí)因式分解的提取分因式和公式法,又為下面解決多項(xiàng)式除法運(yùn)算作鋪墊]
教師訂正
提出問(wèn)題:怎樣計(jì)算(2 a2b-8a2b)÷(4a-b)
二、導(dǎo)入新課,探索新知
(先讓學(xué)生思考上面所提出的問(wèn)題,教師從旁啟發(fā))
師:如果出現(xiàn)豎式計(jì)算,教師可以給予肯定;可能出現(xiàn)(2 a2b-8a2b)÷(4a-b)= ab-8a2追問(wèn)學(xué)生怎么得來(lái)的,運(yùn)算的依據(jù)是什么?這樣暴露學(xué)生的思維,讓學(xué)生自己發(fā)現(xiàn)錯(cuò)誤之處;觀察2 a2b-8a2b=2 ab(b-4a),其中一個(gè)因式正好是除式4a-b的相反數(shù),如果用“換元”思想,我們就可以把問(wèn)題轉(zhuǎn)化為單項(xiàng)式除以單項(xiàng)式。
(2 a2b-8a2b)÷(4a-b)
=-2ab(4a-b)÷(4a-b)
=-2ab
(讓學(xué)生自己比較哪種方法好)
利用上面的數(shù)學(xué)解題思路,同學(xué)們嘗試計(jì)算
(4x2-9)÷(3-2x)
學(xué)生總結(jié)解題步驟:1、因式分解;2、約去公因式)
(全體學(xué)生動(dòng)手動(dòng)腦,然后叫學(xué)生回答,及時(shí)表?yè)P(yáng),講練結(jié)合, [運(yùn)用多項(xiàng)式的因式分解和換元的思想,可以把兩個(gè)多項(xiàng)式相除,轉(zhuǎn)化為單項(xiàng)式的除法]
練習(xí)計(jì)算
(1)(a2-4)÷(a+2)
(2)(x2+2xy+y2)÷(x+y)
(3)[(a-b)2+2(b-a)] ÷(a-b)
三、合作學(xué)習(xí)
1、以四人為一組討論下列問(wèn)題
若A?B=0,下面兩個(gè)結(jié)論對(duì)嗎?
(1)A和B同時(shí)都為零,即A=0且B=0
(2)A和B至少有一個(gè)為零即A=0或B=0
[合作學(xué)習(xí),四個(gè)小組討論,教師逐步引導(dǎo),讓學(xué)生講自己的想法,及解題步驟,培養(yǎng)語(yǔ)言表達(dá)能力,體會(huì)運(yùn)用因式分解的實(shí)際運(yùn)用作用,增加學(xué)習(xí)興趣]
2、你能用上面的結(jié)論解方程
(1)(2x+3)(2x-3)=0 (2)2x2+x=0
解:
∵(2x+3)(2x-3)=0
∴2x+3=0或2x-3=0
∴方程的解為x=-3/2或x=3/2
解:x(2x+1)=0
則x=0或2x+1=0
∴原方程的解是x1=0,x2=-1/2[出國(guó)留學(xué)網(wǎng) wWw.LiUXUE86.cOM]
[讓學(xué)生先獨(dú)立完成,再組織交流,最后教師針對(duì)性地講解,讓學(xué)生總結(jié)步驟:1、移項(xiàng),使方程一邊變形為零;2、等式左邊因式分解;3、轉(zhuǎn)化為解一元一次方程]
3、練習(xí),解下列方程
(1)x2-2x=0 4x2=(x-1)2
四、小結(jié)
(1)應(yīng)用因式分解和換元思想可以把某些多項(xiàng)式除法轉(zhuǎn)化為單項(xiàng)式除法。
(2)如果方程的等號(hào)一邊是零,另一邊含有未知數(shù)x的多項(xiàng)式可以分解成若干個(gè)x的一次式的積,那么就可以應(yīng)用因式分解把原方程轉(zhuǎn)化成幾個(gè)一元一次方程來(lái)解。
設(shè)計(jì)理念:
根據(jù)本節(jié)課的內(nèi)容特點(diǎn),主要采用師生合作討論式課堂教學(xué)方法,以教師為主導(dǎo),學(xué)生為主體,動(dòng)手實(shí)踐訓(xùn)練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標(biāo),引導(dǎo)學(xué)生自主探索,動(dòng)手實(shí)踐,合作交流。注重使學(xué)生經(jīng)辦觀察、操作、推理等探索過(guò)程。這種教學(xué)理念,反映了時(shí)代精神,有利于提高學(xué)生的數(shù)學(xué)素養(yǎng),能有效地激發(fā)學(xué)生的思維積極性,學(xué)生在學(xué)習(xí)過(guò)程中調(diào)動(dòng)各種感官,進(jìn)行觀察與抽象、操作與思考、自主與交流等,進(jìn)而改進(jìn)學(xué)生的學(xué)習(xí)方法。
教學(xué)目標(biāo):
1、進(jìn)一步鞏固因式分解的概念;
2、鞏固因式分解常用的三種方法
3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解4、應(yīng)用因式分解來(lái)解決一些實(shí)際問(wèn)題
5、體驗(yàn)應(yīng)用知識(shí)解決問(wèn)題的樂(lè)趣
教學(xué)重點(diǎn):靈活運(yùn)用因式分解解決問(wèn)題
教學(xué)難點(diǎn):靈活運(yùn)用恰當(dāng)?shù)囊蚴椒纸獾姆椒?,拓展練?xí)2、3
教學(xué)過(guò)程:
一、創(chuàng)設(shè)情景:若a=101,b=99,求a2—b2的值
利用因式分解往往能將一些復(fù)雜的運(yùn)算簡(jiǎn)單化,那么我們先來(lái)回顧一下什么是因式分解和怎樣來(lái)因式分解。
二、知識(shí)回顧
1、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式。
判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問(wèn)講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)
(1)、x2—4y2=(x+2y)(x—2y)因式分解(2)。2x(x—3y)=2x2—6xy整式乘法
(3)、(5a—1)2=25a2—10a+1整式乘法(4)。x2+4x+4=(x+2)2因式分解
(5)、(a—3)(a+3)=a2—9整式乘法(6)。m2—4=(m+4)(m—4)因式分解
(7)、2πR+2πr=2π(R+r)因式分解
2、規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過(guò)程。
分解因式要注意以下幾點(diǎn):
(1)。分解的對(duì)象必須是多項(xiàng)式。
(2)。分解的結(jié)果一定是幾個(gè)整式的乘積的形式。
(3)。要分解到不能分解為止。
3、因式分解的方法
提取公因式法:—6x2+6xy+3x=—3x(2x—2y—1)公因式的概念;公因式的求法
公式法:平方差公式:a2—b2=(a+b)(a—b)完全平方公式:a2+2ab+b2=(a+b)2
4、強(qiáng)化訓(xùn)練
教學(xué)引入
師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個(gè)長(zhǎng)方形折疊就可以得到一個(gè)正方形?,F(xiàn)在請(qǐng)同學(xué)們拿出一個(gè)長(zhǎng)方形紙條,按動(dòng)畫(huà)所示進(jìn)行折疊處理。
動(dòng)畫(huà)演示:
場(chǎng)景一:正方形折疊演示
師:這就是我們得到的正方形。下面請(qǐng)同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來(lái)研究正方形的幾何性質(zhì)—邊、角以及對(duì)角線之間的關(guān)系。請(qǐng)大家測(cè)量各邊的長(zhǎng)度、各角的大小、對(duì)角線的長(zhǎng)度以及對(duì)角線交點(diǎn)到各頂點(diǎn)的長(zhǎng)度。
[學(xué)生活動(dòng):各自測(cè)量。]
鼓勵(lì)學(xué)生將測(cè)量結(jié)果與鄰近同學(xué)進(jìn)行比較,找出共同點(diǎn)。
講授新課
找一兩個(gè)學(xué)生表述其結(jié)論,表述是要注意糾正其語(yǔ)言的.規(guī)范性。
動(dòng)畫(huà)演示:
場(chǎng)景二:正方形的性質(zhì)
師:這些性質(zhì)里那些是矩形的性質(zhì)?
[學(xué)生活動(dòng):尋找矩形性質(zhì)。]
動(dòng)畫(huà)演示:
場(chǎng)景三:矩形的性質(zhì)
師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。
[學(xué)生活動(dòng);尋找菱形性質(zhì)。]
動(dòng)畫(huà)演示:
場(chǎng)景四:菱形的性質(zhì)
師:這說(shuō)明正方形具有矩形和菱形的全部性質(zhì)。
及時(shí)提出問(wèn)題,引導(dǎo)學(xué)生進(jìn)行思考。
師:根據(jù)這些性質(zhì),我們能不能給正方形下一個(gè)定義?怎么樣給正方形下一個(gè)準(zhǔn)確的定義?
[學(xué)生活動(dòng):積極思考,有同學(xué)做躍躍欲試狀。]
師:請(qǐng)同學(xué)們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類(lèi)似的給出正方形的定義。
學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵(lì),把以下三種板書(shū):
“有一組鄰邊相等的矩形叫做正方形。”
“有一個(gè)角是直角的菱形叫做正方形?!?/p>
“有一個(gè)角是直角且有一組鄰邊相等的平行四邊形叫做正方形?!?/p>
[學(xué)生活動(dòng):討論這三個(gè)定義正確不正確?三個(gè)定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]
師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。
試一試把下列各式因式分解:
(1)。1—x2=(1+x)(1—x)(2)。4a2+4a+1=(2a+1)2
(3)。4x2—8x=4x(x—2)(4)。2x2y—6xy2=2xy(x—3y)
三、例題講解
例1、分解因式
(1)—x3y3+x2y+xy(2)6(x—2)+2x(2—x)
(3)(4)y2+y+
例2、分解因式
1、a3—ab2=2、(a—b)(x—y)—(b—a)(x+y)=3、(a+b)2+2(a+b)—15=
4、—1—2a—a2=5、x2—6x+9—y26、x2—4y2+x+2y=
例3、分解因式
1、72—2(13x—7)22、8a2b2—2a4b—8b3
四、知識(shí)應(yīng)用
1、(4x2—9y2)÷(2x+3y)2、(a2b—ab2)÷(b—a)
3、解方程:(1)x2=5x(2)(x—2)2=(2x+1)2
4、。若x=—3,求20x2—60x的值。5、1993—199能被200整除嗎?還能被哪些整數(shù)整除?
五、拓展應(yīng)用
1。計(jì)算:7652×17—2352×17解:7652×17—2352×17=17(7652—2352)=17(765+235)(765—235)
2、20042+20xx被20xx整除嗎?
3、若n是整數(shù),證明(2n+1)2—(2n—1)2是8的倍數(shù)。
五、課堂小結(jié)
今天你對(duì)因式分解又有哪些新的認(rèn)識(shí)?
一、運(yùn)用平方差公式分解因式
教學(xué)目標(biāo)1、使學(xué)生了解運(yùn)用公式來(lái)分解因式的意義。
2、使學(xué)生理解平方差公式的意義,弄清平方差公式的形式和特點(diǎn);使學(xué)生知道把乘法公式反過(guò)來(lái)就可以得到相應(yīng)的因式分解。
3、掌握運(yùn)用平方差公式分解因式的方法,能正確運(yùn)用平方差公式把多項(xiàng)式分解因式(直接用公式不超過(guò)兩次)
重點(diǎn)運(yùn)用平方差公式分解因式
難點(diǎn)靈活運(yùn)用平方差公式分解因式
教學(xué)方法對(duì)比發(fā)現(xiàn)法課型新授課教具投影儀
教師活動(dòng)學(xué)生活動(dòng)
情景設(shè)置:
同學(xué)們,你能很快知道992-1是100的倍數(shù)嗎?你是怎么想出來(lái)的?
(學(xué)生或許還有其他不同的解決方法,教師要給予充分的肯定)
新課講解:
從上面992-1=(99+1)(99-1),我們?nèi)菀卓闯?這種方法利用了我們剛學(xué)過(guò)的哪一個(gè)乘法公式?
首先我們來(lái)做下面兩題:(投影)
1.計(jì)算下列各式:
(1)(a+2)(a-2)=;
(2)(a+b)(a-b)=;
(3)(3a+2b)(3a-2b)=.
2.下面請(qǐng)你根據(jù)上面的算式填空:
(1)a2-4=;
(2)a2-b2=;
(3)9a2-4b2=;
請(qǐng)同學(xué)們對(duì)比以上兩題,你發(fā)現(xiàn)什么呢?
事實(shí)上,像上面第2題那樣,把一個(gè)多項(xiàng)式寫(xiě)成幾個(gè)整式積的形式叫做多項(xiàng)式的因式分解。(投影)
比如:a2–16=a2–42=(a+4)(a–4)
例題1:把下列各式分解因式;(投影)
(1)36–25x2;(2)16a2–9b2;
(3)9(a+b)2–4(a–b)2.
(讓學(xué)生弄清平方差公式的形式和特點(diǎn)并會(huì)運(yùn)用)
例題2:如圖,求圓環(huán)形綠化區(qū)的面積
練習(xí):第87頁(yè)練一練第1、2、3題
小結(jié):
這節(jié)課你學(xué)到了什么知識(shí),掌握什么方法?
教學(xué)素材:
A組題:
1.填空:81x2-=(9x+y)(9x-y);=
利用因式分解計(jì)算:=。
2、下列多項(xiàng)式中能用平方差公式分解因式的是()(A)(B)(C)(D)3.把下列各式分解因式
(1)1-16a2(2)9a2x2-b2y2
(3).49(a-b)2-16(a+b)2
B組題:
1分解因式81a4-b4=
2若a+b=1,a2+b2=1,則ab=;
3若26+28+2n是一個(gè)完全平方數(shù),則n=.
由學(xué)生自己先做(或互相討論),然后回答,若有答不全的,教師(或其他學(xué)生)補(bǔ)充.
學(xué)生回答1:
992-1=99×99-1=9801-1
=9800
學(xué)生回答2:992-1就是(99+1)(99-1)即100×98
學(xué)生回答:平方差公式
學(xué)生回答:
(1):a2-4
(2):a2-b2
(3):9a2-4b2
學(xué)生輕松口答
(a+2)(a-2)
(a+b)(a-b)
(3a+2b)(3a-2b)
學(xué)生回答:
把乘法公式
(a+b)(a-b)=a2-b2
反過(guò)來(lái)就得到
a2-b2=(a+b)(a-b)
學(xué)生上臺(tái)板演:
36–25x2=62–(5x)2
=(6+5x)(6–5x)
16a2–9b2=(4a)2–(3b)2
=(4a+3b)(4a–3b)
9(a+b)2–4(a–b)2
=[3(a+b)]2–[2(a–b)]2
=[3(a+b)+2(a–b)]
[3(a+b)–2(a–b)]
=(5a+b)(a+5b)
解:352π–152π
=π(352–152)
=(35+15)(35–15)π
=50×20π
=1000π(m2)
這個(gè)綠化區(qū)的面積是
1000πm2
學(xué)生歸納總結(jié)
喜歡《因式分解教案》一文嗎?“幼兒教師教育網(wǎng)”希望帶您更加了解幼兒園教案,同時(shí),yjs21.com編輯還為您精選準(zhǔn)備了因式分解教案專(zhuān)題,希望您能喜歡!
相關(guān)推薦
經(jīng)驗(yàn)告訴我們,成功是留給有準(zhǔn)備的人。優(yōu)質(zhì)課堂,就是幼兒園的老師在講學(xué)生在答,講的知識(shí)都能被學(xué)生吸收,為了提升學(xué)生的學(xué)習(xí)效率,準(zhǔn)備教案是一個(gè)很好的選擇,有了教案的支持可以讓同學(xué)聽(tīng)的快樂(lè),老師自己也講的輕松。那么如何寫(xiě)好我們的幼兒園教案呢?下面,我們?yōu)槟阃扑]了因式分解教案推薦15篇,還請(qǐng)多多關(guān)注我們網(wǎng)站...
作為幼兒園教師,每個(gè)老師需要學(xué)會(huì)弄好自己的說(shuō)課稿,為了提升學(xué)生的學(xué)習(xí)興趣,我們一般會(huì)事先準(zhǔn)備好說(shuō)課稿,好的說(shuō)課稿有助于讓同學(xué)們很好的吸收課堂上所講的知識(shí)點(diǎn),如何突出重點(diǎn)來(lái)寫(xiě)幼兒園說(shuō)課稿呢?你不妨看看因式分解說(shuō)課稿精選,供你參考,希望能幫到你。一、說(shuō)教材1、關(guān)于地位與作用。今天我說(shuō)課的內(nèi)容是浙教版七年...
老師在正式上課之前需要寫(xiě)好本學(xué)期教學(xué)教案課件,又到了老師開(kāi)始寫(xiě)教案課件的時(shí)候了。與此同時(shí)老師寫(xiě)好教案課件,對(duì)自己教學(xué)情況也能有所提升。經(jīng)過(guò)搜索和整理,幼兒教師教育網(wǎng)為大家呈上分式方程教案,相信會(huì)對(duì)你有所幫助!...
這是大班數(shù)學(xué)8的分解教案,是優(yōu)秀的大班數(shù)學(xué)教案文章,供老師家長(zhǎng)們參考學(xué)習(xí)。 一、說(shuō)教材 8的分解是《新編學(xué)前班兒童用書(shū)——數(shù)學(xué)》學(xué)習(xí)課程上冊(cè)第30頁(yè)的內(nèi)容。掌握8的分解是進(jìn)行8的減法運(yùn)算的基礎(chǔ)。教材根...
最新更新