幼兒教師教育網(wǎng),為您提供優(yōu)質(zhì)的幼兒相關(guān)資訊

高中數(shù)學(xué)三角函數(shù)PPT內(nèi)容優(yōu)秀課件(優(yōu)選10篇)

發(fā)布時(shí)間:2024-09-08

作為一位不辭辛勞的人民教師,往往需要進(jìn)行教案編寫工作,教案有助于學(xué)生理解并掌握系統(tǒng)的知識(shí)。那么應(yīng)當(dāng)如何寫教案呢?以下是小編精心整理的高一數(shù)學(xué)三角函數(shù)教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

高中數(shù)學(xué)三角函數(shù)PPT內(nèi)容優(yōu)秀課件 篇1

《銳角三角函數(shù)》(第一課時(shí)),所選用的教材為人教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書。根據(jù)新課標(biāo)的理念,對(duì)于本節(jié)課,以教什么,怎樣教,為什么這樣教為思路,從教材分析,教學(xué)目標(biāo)分析,教學(xué)方法和學(xué)法分析,教學(xué)過程分析四個(gè)方面加以說明。

一、教材的地位和作用

1、教材分析

本節(jié)教材是人教版初中數(shù)學(xué)新教材九年級(jí)下第28章第一節(jié)內(nèi)容,是初中數(shù)學(xué)的重要內(nèi)容之一。一方面,這是在學(xué)習(xí)了直角三角形兩銳角關(guān)系、勾股定理等知識(shí)的基礎(chǔ)上,對(duì)直角三角形邊角關(guān)系的進(jìn)一步深入和拓展;另一方面,又為解直角三角形等知識(shí)奠定了基礎(chǔ),也是高中進(jìn)一步研究三角函數(shù)、反三角函數(shù)的工具性內(nèi)容。鑒于這種認(rèn)識(shí),我認(rèn)為,本節(jié)課不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。

2、學(xué)情分析

從學(xué)生的年齡特征和認(rèn)知特征來看:

九年級(jí)學(xué)生的思維活躍,接受能力較強(qiáng),具備了一定的數(shù)學(xué)探究活動(dòng)經(jīng)歷和應(yīng)用數(shù)學(xué)的意識(shí)。

從學(xué)生已具備的知識(shí)和技能來看:

九年級(jí)學(xué)生已經(jīng)掌握直角三角形中各邊和各角的關(guān)系,能靈活運(yùn)用相似圖形的性質(zhì)及判定方法解決問題,有較強(qiáng)的推理證明能力,這為順利完成本節(jié)課的教學(xué)任務(wù)打下了基礎(chǔ)。

從心理特征來看:九年級(jí)學(xué)生邏輯思維從經(jīng)驗(yàn)型逐步向理論型發(fā)展,觀察能力,記憶能力和想象能力也隨著迅速發(fā)展。

從學(xué)生有待于提高的知識(shí)和技能來看:

學(xué)生要得出直角三角形中邊與角之間的關(guān)系,需要觀察、思考、交流,進(jìn)一步體會(huì)數(shù)學(xué)知識(shí)之間的聯(lián)系,感受數(shù)形結(jié)合的思想,體會(huì)銳角三角函數(shù)的意義,提高應(yīng)用數(shù)學(xué)和合作交流的能力。學(xué)生可能會(huì)產(chǎn)生一定的困難,所以教學(xué)中應(yīng)予以簡(jiǎn)單明了,深入淺出的剖析。

3、教學(xué)重點(diǎn)、難點(diǎn)

根據(jù)以上對(duì)教材的地位和作用,以及學(xué)情分析,結(jié)合新課標(biāo)對(duì)本節(jié)課的要求,我認(rèn)為本節(jié)課的重點(diǎn)為:理解正弦函數(shù)意義,并會(huì)求銳角的正弦值。

難點(diǎn)為:根據(jù)銳角的正弦值及一邊,求直角三角形的其它邊長(zhǎng)。

二、教學(xué)目標(biāo)分析:

新課標(biāo)指出,教學(xué)目標(biāo)應(yīng)從知識(shí)技能、數(shù)學(xué)思考、問題解決、情感態(tài)度等四個(gè)方面闡述,而這四維目標(biāo)又應(yīng)是緊密聯(lián)系的一個(gè)完整的整體,學(xué)生學(xué)知識(shí)技能的過程同時(shí)成為學(xué)會(huì)學(xué)習(xí),形成正確價(jià)值觀的過程,這告訴我們,在教學(xué)中應(yīng)以知識(shí)技能為主線,滲透情感態(tài)度,并把前面兩者通過數(shù)學(xué)思考充分體現(xiàn)在問題解決中。借此結(jié)合以上教材分析,將四個(gè)目標(biāo)進(jìn)行整合,確定本節(jié)課的教學(xué)目標(biāo)為:

1.理解銳角正弦的意義,并會(huì)求銳角的正弦值;

2掌握根據(jù)銳角的正弦值及直角三角形的一邊,求直角三角形的其它邊長(zhǎng)的方法;

3經(jīng)歷銳角正弦的意義探索的過程,培養(yǎng)學(xué)生觀察分析、類比歸納的探究問題的能力;

4通過主動(dòng)探究,合作交流,感受探索的樂趣和成功的體驗(yàn),體會(huì)數(shù)學(xué)的合理性和嚴(yán)謹(jǐn)性,使學(xué)生養(yǎng)成積極思考,獨(dú)立思考的好習(xí)慣,并且同時(shí)培養(yǎng)學(xué)生的團(tuán)隊(duì)合作精神。

三、教學(xué)方法和學(xué)法分析

現(xiàn)代教學(xué)理論認(rèn)為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的一切活動(dòng)都必須以強(qiáng)調(diào)學(xué)生的主動(dòng)性、積極性為出發(fā)點(diǎn)。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點(diǎn)和學(xué)生的學(xué)情情況,本節(jié)課我采用“三動(dòng)五自主”的教學(xué)模式,以問題的提出、問題的解決為主線,始終在學(xué)生知識(shí)的“最近發(fā)展區(qū)”設(shè)置問題,倡導(dǎo)學(xué)生主動(dòng)參與教學(xué)實(shí)踐活動(dòng),以獨(dú)立思考和合作交流的形式,在教師的指道下發(fā)現(xiàn)、分析和解決問題,在引導(dǎo)分析時(shí),給學(xué)生流出足夠的思考時(shí)間和空間,讓學(xué)生去聯(lián)想、探索,從真正意義上完成對(duì)知識(shí)的自我建構(gòu)。

本節(jié)課的教法采用的是情境引導(dǎo)和自學(xué)教學(xué)法,在教學(xué)過程中,通過適宜的問題情境引發(fā)新的認(rèn)知沖突;建立知識(shí)間的聯(lián)系。教師通過引導(dǎo)、指導(dǎo)、反饋、評(píng)價(jià),不斷激發(fā)學(xué)生對(duì)問題的好奇心,使其在積極的自主活動(dòng)中主動(dòng)參與概念的建構(gòu)過程,并運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問題,享受數(shù)學(xué)學(xué)習(xí)帶來的樂趣。

本節(jié)課的學(xué)習(xí)方法采用自主探究法與合作交流法相結(jié)合。本節(jié)課數(shù)學(xué)活動(dòng)貫穿始終,既有學(xué)生自主探究的,也有小組合作交流的,旨在讓學(xué)生從自主探究中發(fā)展,從合作交流中提高。

四、教學(xué)過程

新課標(biāo)指出,數(shù)學(xué)教學(xué)過程是教師引導(dǎo)學(xué)生進(jìn)行學(xué)習(xí)活動(dòng)的過程,是教師和學(xué)生間互動(dòng)的過程,是師生共同發(fā)展的過程。為有序、有效地進(jìn)行教學(xué),本節(jié)課主要安排以下教學(xué)環(huán)節(jié):

(一)自學(xué)提綱

1、已知:在Rt△ABC中,∠C=900,∠A=30°,BC=10m,求AB

已知:在Rt△ABC中,∠C=900,∠A=30°,AB=20m,求BC

設(shè)計(jì)意圖:建構(gòu)注意主張教學(xué)應(yīng)從學(xué)生已有的知識(shí)體系出發(fā),相似的三角形性質(zhì)是本節(jié)課深入研究銳角正弦的認(rèn)知基礎(chǔ),這樣設(shè)計(jì)有利于引導(dǎo)學(xué)生順利地進(jìn)入學(xué)習(xí)情境。

2、創(chuàng)設(shè)情境,提出問題

利用多媒體播放意大利比薩斜塔圖片,然后老師問:比薩斜塔中條件和要探究的問題:“你能根據(jù)問題背景畫出直角三角形并且利用邊求出斜塔的傾斜角嗎?”這就是今天我們要學(xué)習(xí)銳角三角函數(shù)(板書課題)

設(shè)計(jì)意圖:以問題串的形式創(chuàng)設(shè)情境,引起學(xué)生的認(rèn)知沖突,使學(xué)生對(duì)舊知識(shí)產(chǎn)生設(shè)疑,從而激發(fā)學(xué)生的學(xué)習(xí)興趣和求知欲望。

通過情境創(chuàng)設(shè),學(xué)生已激發(fā)了強(qiáng)烈的求知欲望,產(chǎn)生了強(qiáng)勁的學(xué)習(xí)動(dòng)力,此時(shí)我把學(xué)生帶入下一環(huán)節(jié)。

(二)合作交流

1、閱讀課本P74問題與思考(要求學(xué)生獨(dú)立思考后小組內(nèi)合作探究)

結(jié)論:直角三角形中,30°角的對(duì)邊與斜邊的比值。

2、閱讀課本P75思考,并求值

結(jié)論:直角三角形中,45°角的對(duì)邊與斜邊的比值。

設(shè)計(jì)意圖:現(xiàn)代數(shù)學(xué)教學(xué)論指出,數(shù)學(xué)知識(shí)的教學(xué)必須在學(xué)生自主探索,經(jīng)驗(yàn)歸納的基礎(chǔ)上獲得,教學(xué)中必須展現(xiàn)思維的過程性,在這里,通過觀察分析、獨(dú)立思考、小組交流等活動(dòng),引導(dǎo)學(xué)生歸納。

3、閱讀課本P75探究。

問:銳角A度數(shù)一定時(shí),不管直角三角形的大小如何,它的對(duì)邊與斜邊的比有什么關(guān)系?你能解釋嗎?

4、正弦函數(shù)定義:在Rt△ABC中,∠C=900,把銳角A的對(duì)邊與斜邊的比叫做∠A的正弦,記作sinA,即sinA=BC/AB

對(duì)定義的幾點(diǎn)說明:

1、sinA是一個(gè)完整的符號(hào),表示∠A的正弦習(xí)慣上省略“∠”的符號(hào).

2、本章我們只研究銳角的正弦。

通過前面的學(xué)習(xí),學(xué)生已基本把握了本節(jié)課所要學(xué)習(xí)的內(nèi)容,此時(shí),他們急于尋找一塊用武之地,以展示自我,體驗(yàn)成功,于是我把學(xué)生引入到下一環(huán)節(jié)。

(三)自主展示(強(qiáng)化訓(xùn)練,鞏固雙基)

1、(例1課本P76)已知:在Rt△ABC中,∠C=90°,根據(jù)圖中數(shù)據(jù)

求sinA和sinB

2、課本77頁練習(xí)

3、判斷對(duì)錯(cuò)(學(xué)生口答)

(1)若銳角∠A=∠B,則sinA=sinB()

(2)sin60°=30°+sin30°()

4、將Rt△ABC各邊擴(kuò)大100倍,則sinA的值()

A.擴(kuò)大100倍B.縮小100倍C.不變D.不確定

5、平面直角坐標(biāo)系中點(diǎn)P(3,- 4),OP與x軸的夾角為∠1,求sin∠1的值。

6、在Rt△ABC中,∠C=90°,BC=6,sinA=3/5,求:AB, AC的長(zhǎng)。

設(shè)計(jì)意圖:例題及練習(xí)題由淺入深、由易到難、各有側(cè)重,體現(xiàn)新課標(biāo)提出的讓不同的學(xué)生在數(shù)學(xué)上得到不同發(fā)展的教學(xué)理念。這一環(huán)節(jié)總的設(shè)計(jì)意圖是反饋教學(xué),內(nèi)化知識(shí)。

(四)自主評(píng)價(jià)(小結(jié)歸納,拓展深化)

我的理解是,小結(jié)歸納不應(yīng)該僅僅是知識(shí)的簡(jiǎn)單羅列,而應(yīng)該是優(yōu)化認(rèn)知結(jié)構(gòu),完善知識(shí)體系的一種有效手段,為充分發(fā)揮學(xué)生的主題作用,從學(xué)習(xí)的知識(shí)、方法、體驗(yàn)是那個(gè)方面進(jìn)行歸納,我設(shè)計(jì)了這么三個(gè)問題:

①通過本節(jié)課的學(xué)習(xí),你學(xué)會(huì)了哪些知識(shí);

②通過本節(jié)課的學(xué)習(xí),你最大的體驗(yàn)是什么;

③通過本節(jié)課的學(xué)習(xí),你掌握了哪些學(xué)習(xí)數(shù)學(xué)的方法?

(五)自主拓展(提高升華)

1、課本習(xí)題28.1第1、2、題。(只做與正弦函數(shù)有關(guān)的部分);

2、選做題:已知:在Rt△ABC中,∠C=900,sinA=1/3,周長(zhǎng)為60,求:斜邊AB的長(zhǎng).

以作業(yè)的鞏固性和發(fā)展性為出發(fā)點(diǎn),我設(shè)計(jì)了必做題和選做題,必做題是對(duì)本節(jié)課內(nèi)容的一個(gè)反饋,選做題是對(duì)本節(jié)課知識(shí)的一個(gè)延伸??偟脑O(shè)計(jì)意圖是反饋教學(xué),鞏固提高。

以上幾個(gè)環(huán)節(jié)環(huán)環(huán)相扣,層層深入,并充分體現(xiàn)教師與學(xué)生的交流互動(dòng),在教師的整體調(diào)控下,學(xué)生通過動(dòng)腦思考、層層遞進(jìn),對(duì)知識(shí)的理解逐步深入,為了使課堂效益達(dá)到最佳狀態(tài),我設(shè)計(jì)以下問題加以追問:

1、sinA能為負(fù)嗎?

2、比較sin45°和sin30°的大小。

設(shè)計(jì)要求:(1)先學(xué)生獨(dú)立思考后小組內(nèi)探究

(2)各組交流展示探究結(jié)果,并且組內(nèi)或各組之間自主評(píng)價(jià).

設(shè)計(jì)意圖:

(1)有一定難度需要學(xué)生進(jìn)行合作探究,有利于培養(yǎng)學(xué)生善于反思的好習(xí)慣.

(2)學(xué)生通過互評(píng)自評(píng),可以使學(xué)生全面了解自己的學(xué)習(xí)過程,感受自己的成長(zhǎng)和進(jìn)步,同時(shí)促進(jìn)學(xué)生對(duì)學(xué)習(xí)及時(shí)進(jìn)行反思,為教師全面了解學(xué)生的學(xué)習(xí)狀況,改進(jìn)教學(xué),實(shí)施因材施教提供重要依據(jù)。

教學(xué)反思

1.本教學(xué)設(shè)計(jì)以直角三角形為主線,力求體現(xiàn)生活化課堂的理念,讓學(xué)生在經(jīng)歷“問題情境——形成概念——應(yīng)用拓展——反思提高”的基本過程中,體驗(yàn)知識(shí)間的內(nèi)在聯(lián)系,讓學(xué)生感受探究的樂趣,使學(xué)生在學(xué)中思,在思中學(xué)。

2.在教學(xué)過程中,重視過程,深化理解,通過學(xué)生的主動(dòng)探究來體現(xiàn)他們的主體地位,教師是通過對(duì)學(xué)生參與學(xué)習(xí)的啟發(fā)、調(diào)整、激勵(lì)來體現(xiàn)自己的引導(dǎo)作用,對(duì)學(xué)生的主體意識(shí)和合作交流的能力起著積極作用。

3.正弦是生活中應(yīng)用較廣泛的三角函數(shù)。因而在本節(jié)課的設(shè)計(jì)中力求貼近生活。又從意大利比薩斜塔提煉出了數(shù)學(xué)問題,讓學(xué)生體會(huì)學(xué)數(shù)學(xué)、用數(shù)學(xué)的樂趣。

高中數(shù)學(xué)三角函數(shù)PPT內(nèi)容優(yōu)秀課件 篇2

一、課前準(zhǔn)備:

【自主梳理】

1.任意角

(1)角的概念的推廣:

(2)終邊相同的角:

2.弧度制:

弧度與角度的換算:

3.弧長(zhǎng)公式:扇形的面積公式:

4.任意角的三角函數(shù)

(1)任意角的三角函數(shù)定義

(2)三角函數(shù)在各象限內(nèi)符號(hào)口訣是.

5.三角函數(shù)線

【自我檢測(cè)】

1.度.

2.是第象限角.

3.在上與終邊相同的角是.

4.角的終邊過點(diǎn),則.

5.已知扇形的周長(zhǎng)是6,面積是2,則扇形的圓心角的弧度數(shù)是.

6.若且則角是第象限角.

二、課堂活動(dòng):

【例1】填空題:

(1)若則為第象限角.

(2)已知是第三象限角,則是第象限角。

(3)角的終邊與單位圓(圓心在原點(diǎn),半徑為的圓)交于第二象限的點(diǎn),則。

(4)函數(shù)的值域?yàn)椤?/p>

【例2】

(1)已知角的終邊經(jīng)過點(diǎn)且,求的值;

(2)為第二象限角,為其終邊上一點(diǎn),且求的值.

【例3】已知一扇形的中心角是,所在圓的半徑是.

(1)若求扇形的弧長(zhǎng)及該弧所在的弓形面積;

(2)若扇形的周長(zhǎng)是一定值,當(dāng)為多少弧度時(shí),該扇形有最大面積.

課堂小結(jié)

三、課后作業(yè)

1.角是第四象限角,則是第象限角.

2.若,則角的終邊在第象限.

3.已知角的終邊上一點(diǎn),則.

4.已知圓的周長(zhǎng)為,是圓上兩點(diǎn),弧長(zhǎng)為,則弧度.

5.若角的終邊上有一點(diǎn)則的值為.

6.已知點(diǎn)落在角的終邊上,且,則的值為.

7.有下列各式:①②③④,其中為負(fù)值的序號(hào)為。

8.在平面直角坐標(biāo)系中,以軸為始邊作銳角,它們的終邊分別與單位圓相交于兩點(diǎn),已知兩點(diǎn)的橫坐標(biāo)分別為,則.

9.若一扇形的周長(zhǎng)為,則當(dāng)扇形的圓心角等于多少弧度時(shí),這個(gè)扇形的面積最大?最大值是多少?

的正弦、余弦和正切值.

高中數(shù)學(xué)三角函數(shù)PPT內(nèi)容優(yōu)秀課件 篇3

今天我說課的課題是《銳角三角函數(shù)》(第一課時(shí)),所選用的教材為人教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書。

根據(jù)新課標(biāo)的理念,對(duì)于本節(jié)課,我將以教什么,怎樣教,為什么這樣教為思路,從教材分析,教學(xué)目標(biāo)分析,教學(xué)方法和學(xué)法分析,教學(xué)過程分析四個(gè)方面加以說明。

一、教材的地位和作用

本節(jié)教材是人教版初中數(shù)學(xué)新教材九年級(jí)下第28章第一節(jié)內(nèi)容,是初中數(shù)學(xué)的重要內(nèi)容之一。一方面,這是在學(xué)習(xí)了直角三角形兩銳角關(guān)系、勾股定理等知識(shí)的基礎(chǔ)上,對(duì)直角三角形邊角關(guān)系的進(jìn)一步深入和拓展;另一方面,又為解直角三角形等知識(shí)奠定了基礎(chǔ),也是高中進(jìn)一步研究三角函數(shù)、反三角函數(shù)、三角方程的工具性內(nèi)容。鑒于這種認(rèn)識(shí),我認(rèn)為,本節(jié)課不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。

2、學(xué)情分析

從學(xué)生的年齡特征和認(rèn)知特征來看:

九年級(jí)學(xué)生的思維活躍,接受能力較強(qiáng),具備了一定的數(shù)學(xué)探究活動(dòng)經(jīng)歷和應(yīng)用數(shù)學(xué)的意識(shí)。

從學(xué)生已具備的知識(shí)和技能來看:

九年級(jí)學(xué)生已經(jīng)掌握直角三角形中各邊和各角的關(guān)系,能靈活運(yùn)用相似圖形的性質(zhì)及判定方法解決問題,有較強(qiáng)的推理證明能力,這為順利完成本節(jié)課的教學(xué)任務(wù)打下了基礎(chǔ)

從心理特征來看:初三學(xué)生邏輯思維從經(jīng)驗(yàn)型逐步向理論型發(fā)展,觀察能力,記憶能力和想象能力也隨著迅速發(fā)展。

從學(xué)生有待于提高的知識(shí)和技能來看:

學(xué)生要得出直角三角形中邊與角之間的關(guān)系,需要觀察、思考、交流,進(jìn)一步體會(huì)數(shù)學(xué)知識(shí)之間的聯(lián)系,感受數(shù)形結(jié)合的思想,體會(huì)銳角三角函數(shù)的意義,提高應(yīng)用數(shù)學(xué)和合作交流的能力。學(xué)生可能會(huì)產(chǎn)生一定的困難,所以教學(xué)中應(yīng)予以簡(jiǎn)單明了,深入淺出的剖析。

3、教學(xué)重、難點(diǎn)

根據(jù)以上對(duì)教材的地位和作用,以及學(xué)情分析,結(jié)合新課標(biāo)對(duì)本節(jié)課的要求,我將本節(jié)課的重點(diǎn)確定為:理解正弦函數(shù)意義,并會(huì)求銳角的正弦值。

難點(diǎn)確定為:根據(jù)銳角的正弦值及一邊,求直角三角形的其他邊長(zhǎng)。

二、教學(xué)目標(biāo)分析

新課標(biāo)指出,教學(xué)目標(biāo)應(yīng)從知識(shí)技能、數(shù)學(xué)思考、問題解決、情感態(tài)度等四個(gè)方面闡述,而這四維目標(biāo)又應(yīng)是緊密聯(lián)系的一個(gè)完整的整體,學(xué)生學(xué)知識(shí)技能的過程同時(shí)成為學(xué)會(huì)學(xué)習(xí),形成正確價(jià)值觀的過程,這告訴我們,在教學(xué)中應(yīng)以知識(shí)技能為主線,滲透情感態(tài)度,并把前面兩者通過數(shù)學(xué)思考充分體現(xiàn)在問題解決中。借此結(jié)合以上教材分析,我將四個(gè)目標(biāo)進(jìn)行整合,確定本節(jié)課的教學(xué)目標(biāo)為:

1.理解銳角正弦的意義,并會(huì)求銳角的正弦值;

2.初步了解銳角正弦取值范圍及增減性;

3.掌握根據(jù)銳角的正弦值及直角三角形的一邊,求直角三角形的其他邊長(zhǎng)的方法;

4.經(jīng)歷銳角正弦的意義探索的過程,培養(yǎng)學(xué)生觀察分析、類比歸納的探究問題的能力;

5.通過主動(dòng)探究,合作交流,感受探索的樂趣和成功的體驗(yàn),體會(huì)數(shù)學(xué)的合理性和嚴(yán)謹(jǐn)性,使學(xué)生養(yǎng)成積極思考,獨(dú)立思考的好習(xí)慣,并且同時(shí)培養(yǎng)學(xué)生的團(tuán)隊(duì)合作精神。

三、教學(xué)方法和學(xué)法分析

現(xiàn)代教學(xué)理論認(rèn)為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的一切活動(dòng)都必須以強(qiáng)調(diào)學(xué)生的主動(dòng)性、積極性為出發(fā)點(diǎn)。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點(diǎn)和學(xué)生的學(xué)情情況,本節(jié)課我采用“三動(dòng)五自主”的教學(xué)模式,以問題的提出、問題的解決為主線,始終在學(xué)生知識(shí)的“最近發(fā)展區(qū)”設(shè)置問題,倡導(dǎo)學(xué)生主動(dòng)參與教學(xué)實(shí)踐活動(dòng),以獨(dú)立思考和合作交流的形式,在教師的指道下發(fā)現(xiàn)、分析和解決問題,在引導(dǎo)分析時(shí),給學(xué)生流出足夠的思考時(shí)間和空間,讓學(xué)生去聯(lián)想、探索,從真正意義上完成對(duì)知識(shí)的自我建構(gòu)。

另外,在教學(xué)過程中,我采用多媒體輔助教學(xué),以直觀呈現(xiàn)教學(xué)素材,從而更好地激發(fā)學(xué)生的學(xué)習(xí)興趣,增大教學(xué)容量,提高教學(xué)效率。

本節(jié)課的教法采用的是情境引導(dǎo)和探究發(fā)現(xiàn)教學(xué)法,在教學(xué)過程中,通過適宜的問題情境引發(fā)新的認(rèn)知沖突;建立知識(shí)間的聯(lián)系。教師通過引導(dǎo)、指導(dǎo)、反饋、評(píng)價(jià),不斷激發(fā)學(xué)生對(duì)問題的好奇心,使其在積極的自主活動(dòng)中主動(dòng)參與概念的建構(gòu)過程,并運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問題,享受數(shù)學(xué)學(xué)習(xí)帶來的樂趣。

本節(jié)課的學(xué)習(xí)方法采用自主探究法與合作交流法相結(jié)合。本節(jié)課數(shù)學(xué)活動(dòng)貫穿始終,既有學(xué)生自主探究的,也有小組合作交流的,旨在讓學(xué)生從自主探究中發(fā)展,從合作交流中提高。

四、教學(xué)過程

新課標(biāo)指出,數(shù)學(xué)教學(xué)過程是教師引導(dǎo)學(xué)生進(jìn)行學(xué)習(xí)活動(dòng)的過程,是教師和學(xué)生間互動(dòng)的過程,是師生共同發(fā)展的過程。為有序、有效地進(jìn)行教學(xué),本節(jié)課我主要安排以下教學(xué)環(huán)節(jié):

(一)自主探究

1、復(fù)習(xí)舊知,溫故知新

1、已知:在Rt△ABC中,∠C=900,∠A=350,則∠B= 0

2、已知:在Rt△ABC中,∠C=900,AB=5,AC=3,則BC=

設(shè)計(jì)意圖:建構(gòu)注意主張教學(xué)應(yīng)從學(xué)生已有的知識(shí)體系出發(fā),相似的三角形性質(zhì)是本節(jié)課深入研究銳角正弦的認(rèn)知基礎(chǔ),這樣設(shè)計(jì)有利于引導(dǎo)學(xué)生順利地進(jìn)入學(xué)習(xí)情境。

2、創(chuàng)設(shè)情境,提出問題

利用多媒體播放意大利比薩斜塔圖片,然后老師問:比薩斜塔中條件和要探究的問題:“你能根據(jù)問題背景畫出直角三角形并且利用邊求出斜塔的傾斜角嗎?”這就是今天我們要學(xué)習(xí)銳角三角函數(shù)(板書課題)

設(shè)計(jì)意圖:以問題串的形式創(chuàng)設(shè)情境,引起學(xué)生的認(rèn)知沖突,使學(xué)生對(duì)舊知識(shí)產(chǎn)生設(shè)疑,從而激發(fā)學(xué)生的學(xué)習(xí)興趣和求知欲望‘

通過情境創(chuàng)設(shè),學(xué)生已激發(fā)了強(qiáng)烈的求知欲望,產(chǎn)生了強(qiáng)勁的學(xué)習(xí)動(dòng)力,此時(shí)我把學(xué)生帶入下一環(huán)節(jié)———

(二)自主合作

1、發(fā)現(xiàn)問題,探求新知(要求學(xué)生獨(dú)立思考后小組內(nèi)合作探究)

1、(播放綠化荒山的視頻)課本P74問題與思考,求的值

2、課本P75思考:求的值

設(shè)計(jì)意圖:現(xiàn)代數(shù)學(xué)教學(xué)論指出,數(shù)學(xué)知識(shí)的教學(xué)必須在學(xué)生自主探索,經(jīng)驗(yàn)歸納的基礎(chǔ)上獲得,教學(xué)中必須展現(xiàn)思維的過程性,在這里,通過觀察分析、獨(dú)立思考、小組交流等活動(dòng),引導(dǎo)學(xué)生歸納。

2、分析思考,加深理解

1、課本P75探索,

問:與有什么關(guān)系?你能解釋嗎?

2、正弦函數(shù)定義:在Rt△ABC中,∠C=900,,把銳角A的對(duì)邊與斜邊的比叫做∠A的正弦,記作sinA,即sinA=

對(duì)定義的幾點(diǎn)說明:

1、sinA是一個(gè)完整的符號(hào),表示∠A的正切習(xí)慣上省略“∠”的符號(hào).

2、本章我們只研究銳角∠A的正弦.

3、sinA的范圍:0

設(shè)計(jì)意圖:數(shù)學(xué)教學(xué)論指出,數(shù)學(xué)概念要明確其內(nèi)涵和外延(條件、結(jié)論、應(yīng)用范圍等),通過對(duì)銳角正弦定義闡述,使學(xué)生的認(rèn)知結(jié)構(gòu)得到優(yōu)化,知識(shí)體系得到完善,使學(xué)生的數(shù)學(xué)理解又一次突破思維的難點(diǎn)。

通過前面的學(xué)習(xí),學(xué)生已基本把握了本節(jié)課所要學(xué)習(xí)的內(nèi)容,此時(shí),他們急于尋找一塊用武之地,以展示自我,體驗(yàn)成功,于是我把學(xué)生引入到下一環(huán)節(jié)。

(三)自主展示(強(qiáng)化訓(xùn)練,鞏固雙基)

1、(例1課本P76)已知:在Rt△ABC中,∠C=900,根據(jù)圖中數(shù)據(jù)

求sinA和sinB

2、判斷對(duì)錯(cuò)(學(xué)生口答)

(1)若銳角∠A=∠B,則sinA=sinB ( )

(2)sin600=sin300+sin300 ( )

3、如圖,將Rt△ABC各邊擴(kuò)大100倍,則tanA的值( )

A.擴(kuò)大100倍B.縮小100倍C.不變D.不確定

4、如圖,平面直角坐標(biāo)系中點(diǎn)P(3,- 4),OP與x軸的夾角為∠1,求sin∠1的值。

設(shè)計(jì)意圖:幾道例題及練習(xí)題由淺入深、由易到難、各有側(cè)重,其中例1……例2……,體現(xiàn)新課標(biāo)提出的讓不同的學(xué)生在數(shù)學(xué)上得到不同發(fā)展的教學(xué)理念。這一環(huán)節(jié)總的設(shè)計(jì)意圖是反饋教學(xué),內(nèi)化知識(shí)。

(四)自主拓展(提高升華)

1、課本習(xí)題28.1第1、2、題;

2、選做題:已知:在Rt△ABC中,∠C=900,sinA=,周長(zhǎng)為60,求:斜邊AB的長(zhǎng)?

以作業(yè)的鞏固性和發(fā)展性為出發(fā)點(diǎn),我設(shè)計(jì)了必做題和選做題,必做題是對(duì)本節(jié)課內(nèi)容的一個(gè)反饋,選做題是對(duì)本節(jié)課知識(shí)的一個(gè)延伸??偟脑O(shè)計(jì)意圖是反饋教學(xué),鞏固提高。

(五)自主評(píng)價(jià)(小結(jié)歸納,拓展深化)

我的理解是,小結(jié)歸納不應(yīng)該僅僅是知識(shí)的簡(jiǎn)單羅列,而應(yīng)該是優(yōu)化認(rèn)知結(jié)構(gòu),完善知識(shí)體系的一種有效手段,為充分發(fā)揮學(xué)生的主題作用,從學(xué)習(xí)的知識(shí)、方法、體驗(yàn)是那個(gè)方面進(jìn)行歸納,我設(shè)計(jì)了這么三個(gè)問題:

①通過本節(jié)課的學(xué)習(xí),你學(xué)會(huì)了哪些知識(shí);

②通過本節(jié)課的學(xué)習(xí),你最大的體驗(yàn)是什么;

③通過本節(jié)課的學(xué)習(xí),你掌握了哪些學(xué)習(xí)數(shù)學(xué)的方法?

以上幾個(gè)環(huán)節(jié)環(huán)環(huán)相扣,層層深入,并充分體現(xiàn)教師與學(xué)生的交流互動(dòng),在教師的整體調(diào)控下,學(xué)生通過動(dòng)腦思考、層層遞進(jìn),對(duì)知識(shí)的理解逐步深入,為了使課堂效益達(dá)到最佳狀態(tài),我設(shè)計(jì)以下問題加以追問:

1、sinA能為負(fù)嗎?

2、比較sin450和sin300的大小?

設(shè)計(jì)要求:(1)先學(xué)生獨(dú)立思考后小組內(nèi)探究

(2)各組交流展示探究結(jié)果,并且組內(nèi)或各組之間自主評(píng)價(jià).

設(shè)計(jì)意圖:

(1)有一定難度需要學(xué)生進(jìn)行合作探究,有利于培養(yǎng)學(xué)生善于反思的好習(xí)慣.

(2)學(xué)生通過互評(píng)自評(píng),可以使學(xué)生全面了解自己的學(xué)習(xí)過程,感受自己的成長(zhǎng)和進(jìn)步,同時(shí)促進(jìn)學(xué)生對(duì)學(xué)習(xí)及時(shí)進(jìn)行反思,為教師全面了解學(xué)生的學(xué)習(xí)狀況,改進(jìn)教學(xué),實(shí)施因材施教提供重要依據(jù)。我的說課到此結(jié)束,敬請(qǐng)各位老師批評(píng)、指正,謝謝!

教學(xué)反思

1.本教學(xué)設(shè)計(jì)以直角三角形為主線,力求體現(xiàn)生活化課堂的理念,讓學(xué)生在經(jīng)歷“問題情境——形成概念——應(yīng)用拓展——反思提高”的基本過程中,體驗(yàn)知識(shí)間的內(nèi)在聯(lián)系,讓學(xué)生感受探究的樂趣,使學(xué)生在學(xué)中思,在思中學(xué)。

2.在教學(xué)過程中,重視過程,深化理解,通過學(xué)生的主動(dòng)探究來體現(xiàn)他們的主體地位,教師是通過對(duì)學(xué)生參與學(xué)習(xí)的啟發(fā)、調(diào)整、激勵(lì)來體現(xiàn)自己的引導(dǎo)作用,對(duì)學(xué)生的主體意識(shí)和合作交流的能力起著積極作用。

3.正弦是生活中應(yīng)用較廣泛的三角函數(shù)。因而在本節(jié)課的設(shè)計(jì)中力求貼近生活。又從意大利比薩斜塔提煉出了數(shù)學(xué)問題,讓學(xué)生體會(huì)學(xué)數(shù)學(xué)、用數(shù)學(xué)的樂趣。

高中數(shù)學(xué)三角函數(shù)PPT內(nèi)容優(yōu)秀課件 篇4

一、教學(xué)目標(biāo)

1.知識(shí)與技能

(1)能夠借助三角函數(shù)的定義及單位圓中的三角函數(shù)線推導(dǎo)三角函數(shù)的誘導(dǎo)公式。

(2)能夠運(yùn)用誘導(dǎo)公式,把任意角的三角函數(shù)的`化簡(jiǎn)、求值問題轉(zhuǎn)化為銳角三角函數(shù)的化簡(jiǎn)、求值問題。

2.過程與方法

(1)經(jīng)歷由幾何直觀探討數(shù)量關(guān)系式的過程,培養(yǎng)學(xué)生數(shù)學(xué)發(fā)現(xiàn)能力和概括能力。

(2)通過對(duì)誘導(dǎo)公式的探求和運(yùn)用,培養(yǎng)化歸能力,提高學(xué)生分析問題和解決問題的能力。

3.情感、態(tài)度、價(jià)值觀

(1)通過對(duì)誘導(dǎo)公式的探求,培養(yǎng)學(xué)生的探索能力、鉆研精神和科學(xué)態(tài)度。

(2)在誘導(dǎo)公式的探求過程中,運(yùn)用合作學(xué)習(xí)的方式進(jìn)行,培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作的精神。

二、教學(xué)重點(diǎn)與難點(diǎn)

教學(xué)重點(diǎn):探求π-a的誘導(dǎo)公式。π+a與-a的誘導(dǎo)公式在小結(jié)π-a的誘導(dǎo)公式發(fā)現(xiàn)過程的基礎(chǔ)上,教師引導(dǎo)學(xué)生推出。

教學(xué)難點(diǎn):π+a,-a與角a終邊位置的幾何關(guān)系,發(fā)現(xiàn)由終邊位置關(guān)系導(dǎo)致(與單位圓交點(diǎn))的坐標(biāo)關(guān)系,運(yùn)用任意角三角函數(shù)的定義導(dǎo)出誘導(dǎo)公式的“研究路線圖”。

三、教學(xué)方法與教學(xué)手段

問題教學(xué)法、合作學(xué)習(xí)法,結(jié)合多媒體課件

四、教學(xué)過程

角的概念已經(jīng)由銳角擴(kuò)充到了任意角,前面已經(jīng)學(xué)習(xí)過任意角的三角函數(shù),那么任意角的三角函數(shù)值怎么求呢?先看一個(gè)具體的問題。

(一)問題提出

如何將任意角三角函數(shù)求值問題轉(zhuǎn)化為0°~360°角三角函數(shù)求值問題。

【問題1】求390°角的正弦、余弦值.

一般地,由三角函數(shù)的定義可以知道,終邊相同的角的同一三角函數(shù)值相等,三角函數(shù)看重的就是終邊位置關(guān)系。即有:sin(a+k·360°)=sinα,cos(a+k·360°)=cosα,(k∈Z),tan(a+k·360°)=tanα。

這組公式用弧度制可以表示成sin(a+2kπ)=sinα,cos(a+2kπ)=cosα,(k∈Z)(公式一),tan(a+2kπ)=tanα。

(二)嘗試推導(dǎo)

如何利用對(duì)稱推導(dǎo)出角π-a與角a的三角函數(shù)之間的關(guān)系。

由上一組公式,我們知道,終邊相同的角的同一三角函數(shù)值一定相等。反過來呢?如果兩個(gè)角的三角函數(shù)值相等,它們的終邊一定相同嗎?比如說:

【問題2】你能找出和30°角正弦值相等,但終邊不同的角嗎?

角π-a與角a的終邊關(guān)于y軸對(duì)稱,有sin(π-a)=sina,cos(π-a)=-cosa,(公式二)tan(π-a)=-tana。

〖思考〗請(qǐng)大家回顧一下,剛才我們是如何獲得這組公式(公式二)的?

因?yàn)榕c角a終邊關(guān)于y軸對(duì)稱是角π-a,利用這種對(duì)稱關(guān)系,得到它們的終邊與單位圓的交點(diǎn)的縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù)。于是,我們就得到了角π-a與角a的三角函數(shù)值之間的關(guān)系:正弦值相等,余弦值互為相反數(shù),進(jìn)而,就得到我們研究三角函數(shù)誘導(dǎo)公式的路線圖:角間關(guān)系→對(duì)稱關(guān)系→坐標(biāo)關(guān)系→三角函數(shù)值間關(guān)系。

(三)自主探究

如何利用對(duì)稱推導(dǎo)出π+a,-a與a的三角函數(shù)值之間的關(guān)系。

剛才我們利用單位圓,得到了終邊關(guān)于y軸對(duì)稱的角π-a與角a的三角函數(shù)值之間的關(guān)系,下面我們還可以研究什么呢?

【問題3】?jī)蓚€(gè)角的終邊關(guān)于x軸對(duì)稱,你有什么結(jié)論?兩個(gè)角的終邊關(guān)于原點(diǎn)對(duì)稱呢?

角-a與角a的終邊關(guān)于x軸對(duì)稱,有:sin(-a)=-sina,cos(-a)=cosa,(公式三)tan(-a)=-tana。

角π+a與角a終邊關(guān)于原點(diǎn)O對(duì)稱,有:sin(π+a)=-sina,cos(π+a)=-cosa,(公式四)tan(π+a)=tana。

上面的公式一~四都稱為三角函數(shù)的誘導(dǎo)公式。

(四)簡(jiǎn)單應(yīng)用

例求下列各三角函數(shù)值:

(1)sinp;

(2)cos(-60°);

(3)tan(-855°)

(五)回顧反思

【問題4】回顧一下,我們是怎樣獲得誘導(dǎo)公式的?研究的過程中,你有哪些體會(huì)?

知識(shí)上,學(xué)會(huì)了四組誘導(dǎo)公式;思想方法層面:誘導(dǎo)公式體現(xiàn)了由未知轉(zhuǎn)化為已知的化歸思想;誘導(dǎo)公式所揭示的是終邊具有某種對(duì)稱關(guān)系的兩個(gè)角三角函數(shù)之間的關(guān)系。主要體現(xiàn)了化歸和數(shù)形結(jié)合的數(shù)學(xué)思想。具體可以表示如下:

(六)分層作業(yè)

1、閱讀課本,體會(huì)三角函數(shù)誘導(dǎo)公式推導(dǎo)過程中的思想方法;

2、必做題課本23頁13

3、選做題

(1)你能由公式二、三、四中的任意兩組公式推導(dǎo)到另外一組公式嗎?

(2)角α和角β的終邊還有哪些特殊的位置關(guān)系,你能探究出它們的三角函數(shù)值之間的關(guān)系嗎?

高中數(shù)學(xué)三角函數(shù)PPT內(nèi)容優(yōu)秀課件 篇5

說教學(xué)目標(biāo):

1、使學(xué)生了解角的形成,理解角的概念掌握角的各種表示法;

2、通過觀察、操作培養(yǎng)學(xué)生的觀察能力和動(dòng)手操作能力。

3、使學(xué)生掌握度、分、秒的進(jìn)位制,會(huì)作度、分、秒間的單位互化

4、采用自學(xué)與小組合作學(xué)習(xí)相結(jié)合的方法,培養(yǎng)學(xué)生主動(dòng)參與、勇于探究的精神。

說教學(xué)重點(diǎn):

理解角的概念,掌握角的三種表示方法

說教學(xué)難點(diǎn):

掌握度、分、秒的進(jìn)位制, ,會(huì)作度、分、秒間的單位互化

說教學(xué)手段:

教具:電腦課件、實(shí)物投影、量角器

學(xué)具:量角器需測(cè)量的角

說教學(xué)過程:

一、建立角的概念

(一)引入角(利用課件演示)

1、從生活中引入

提問:

A、以前我們?cè)?jīng)認(rèn)識(shí)過角,那你們能從這兩個(gè)圖形中指出哪些地方是角嗎?

B、在我們的生活當(dāng)中存在著許許多多的角。一起看一看。誰能從這些常用的物品中找出角?

2、從射線引入

提問:

A、昨天我們認(rèn)識(shí)了射線,想從一點(diǎn)可以引出多少條射線?

B、如果從一點(diǎn)出發(fā)任意取兩條射線,那出現(xiàn)的是什么圖形?

C、哪兩條射線可以組成一個(gè)角?誰來指一指。

(二)認(rèn)識(shí)角,總結(jié)角的定義

3、 過渡:角是怎么形成的呢?一起看

(1)、演示:老師在這畫上一個(gè)點(diǎn),現(xiàn)在從這點(diǎn)出發(fā)引出一條射線,再從這點(diǎn)出發(fā)引出第二條射線。

提問:觀察從這點(diǎn)引出了幾條射線?此時(shí)所組成的圖形是什么圖形?

(2)、判斷下列哪些圖形是角。

(√) (×) (√) (×) (√)

為何第二幅和第四幅圖形不是角?(學(xué)生回答)

誰能用自己的話來概括一下怎樣組成的圖形叫做角?

總結(jié):有公共端點(diǎn)的兩條射線所組成的圖形叫做角(angle)

角的第二定義:角也可以看做由一條射線繞端點(diǎn)旋轉(zhuǎn)所形成的圖形.如下圖中的角,可以看做射線OA繞端點(diǎn)0按逆時(shí)針方向旋轉(zhuǎn)到OB所形成的我們把OA叫做角的始邊,OB叫做角的終邊.

B

0 A

4、認(rèn)識(shí)角的各部分名稱,明確頂點(diǎn)、邊的作用

(1)觀看角的圖形提問:這個(gè)點(diǎn)叫什么?這兩條射線叫什么?(學(xué)生邊說師邊標(biāo)名稱)

(2)角可以畫在本上、黑板上,那角的位置是由誰決定的?

(3)頂點(diǎn)可以確定角的位置,從頂點(diǎn)引出的兩條邊可以組成一個(gè)角。

5、學(xué)會(huì)用符號(hào)表示角

提問:那么,角的符號(hào)是什么?該怎么寫,怎么讀的呢?(電腦顯示)

(1)可以標(biāo)上三個(gè)大寫字母,寫作:∠ABC或∠CBA,讀作:角ABC或角CBA.

(2)觀察這兩種方法,有什么特點(diǎn)?(字母B都在中間)

(3)所以,在只有一個(gè)角的時(shí)候,我們還可以寫作: ∠B,讀作:角B

(4)為了方便,有時(shí)我們還可以標(biāo)上數(shù)字,寫作∠1,讀作:角1

(5)注:區(qū)別 “∠”和“

6、強(qiáng)調(diào)角的大小與兩邊張開的程度有關(guān),與兩條邊的長(zhǎng)短無關(guān)。

二、 角的度量

1、學(xué)習(xí)角的度量

(1)教學(xué)生認(rèn)識(shí)量角器

(2) 認(rèn)識(shí)了量角器,那怎樣使用它去測(cè)量角的度數(shù)呢?這部分知識(shí)請(qǐng)同學(xué)們合作學(xué)習(xí)。

提出要求:小組合作邊學(xué)習(xí)測(cè)量方法邊嘗試測(cè)量

第一個(gè)角,想想有幾種方法?

1、要求合作學(xué)習(xí)探究、測(cè)量。

2、反饋匯報(bào):學(xué)生邊演示邊復(fù)述過程

3、教師利用課件演示正確的操作過程,糾正學(xué)生中存在的問題。

4、歸納概括測(cè)量方法(兩重合一對(duì))

(1)用量角器的.中心點(diǎn)與角的頂點(diǎn)重合

(2)零刻度線與角的一邊重合(可與內(nèi)零度刻度線重合;也可與外零度刻度線重合)

(3)另一條邊所對(duì)的角的度數(shù),就是這個(gè)角的度數(shù)。

5、小結(jié):同一個(gè)角無論是用內(nèi)刻度量角,還是用外刻度量角,結(jié)果都一樣。

6、獨(dú)立練習(xí)測(cè)量角的度數(shù)(書做一做中第一題1,3與第二題)

(1) 獨(dú)立測(cè)量,師注意查看學(xué)生中存在的問題。

(2) 課件演示糾正問題

三、度、分、秒的進(jìn)位制及這些單位間的互化

為了更精細(xì)地度量角,我們引入更小的角度單位:分、秒.把1°的角等分成60份,每份叫做1分記作1′;把1′的角再等分成60份,每份叫做1秒的角,1秒記作1″.

1°=60′,1′=60″;

1′=( )°,1″=( )′.

例1 將57.32°用度、分、秒表示.

解:先把0.32°化為分,

0.32°=60′×0.32=19.2′.

再把0.2′化為秒,

0.2′=60″×0.2=12″.

所以 57.32″=57°19′12″.

例2 把10°6′36″用度表示.

解:先把36″化為分,

36″=( )′×36=0.6′

6′+0.6′=6.6′.

再把6.6′化為度,

6.6′=( )°×6.6=0.11°.

所以 10°6′36″=10.11°.

四、鞏固練習(xí)

課本P122練習(xí)

五、總結(jié):請(qǐng)大家回憶一下,今天都學(xué)了那些知識(shí),通過學(xué)習(xí)你想說些什么?

六、作業(yè):課本P123 3、4.(1)(3)、5.(2)(4)

高中數(shù)學(xué)三角函數(shù)PPT內(nèi)容優(yōu)秀課件 篇6

教學(xué)準(zhǔn)備

教學(xué)目標(biāo)

解三角形及應(yīng)用舉例

教學(xué)重難點(diǎn)

解三角形及應(yīng)用舉例

教學(xué)過程

一.基礎(chǔ)知識(shí)精講

掌握三角形有關(guān)的定理

利用正弦定理,可以解決以下兩類問題:

(1)已知兩角和任一邊,求其他兩邊和一角;

(2)已知兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角(從而進(jìn)一步求出其他的邊和角);利用余弦定理,可以解決以下兩類問題:

(1)已知三邊,求三角;

(2)已知兩邊和它們的夾角,求第三邊和其他兩角。

掌握正弦定理、余弦定理及其變形形式,利用三角公式解一些有關(guān)三角形中的三角函數(shù)問題.

二.問題討論

思維點(diǎn)撥:已知兩邊和其中一邊的對(duì)角解三角形問題,用正弦定理解,但需注意解的情況的`討論.

思維點(diǎn)撥::三角形中的三角變換,應(yīng)靈活運(yùn)用正、余弦定理.在求值時(shí),要利用三角函數(shù)的有關(guān)性質(zhì).

例6:在某海濱城市附近海面有一臺(tái)風(fēng),據(jù)檢測(cè),當(dāng)前臺(tái)風(fēng)中心位于城市O(如圖)的東偏南方向300 km的海面P處,并以20 km / h的速度向西偏北的方向移動(dòng),臺(tái)風(fēng)侵襲的范圍為圓形區(qū)域,當(dāng)前半徑為60 km,并以10 km / h的速度不斷增加,問幾小時(shí)后該城市開始受到臺(tái)風(fēng)的侵襲。

一. 小結(jié):

1.利用正弦定理,可以解決以下兩類問題:

(1)已知兩角和任一邊,求其他兩邊和一角;

(2)已知兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角(從而進(jìn)一步求出其他的邊和角);

2.利用余弦定理,可以解決以下兩類問題:

(1)已知三邊,求三角;

(2)已知兩邊和它們的夾角,求第三邊和其他兩角。

3.邊角互化是解三角形問題常用的手段.

三.作業(yè):P80闖關(guān)訓(xùn)練

高中數(shù)學(xué)三角函數(shù)PPT內(nèi)容優(yōu)秀課件 篇7

一、說教材

教材是連接教師和學(xué)生的紐帶,在整個(gè)教學(xué)過程中起著至關(guān)重要的作用,所以,先談?wù)勎覍?duì)教材的理解。

正弦函數(shù)的性質(zhì)是選自北師大版高中數(shù)學(xué)必修四第一章三角函數(shù)第五節(jié)正弦函數(shù)的性質(zhì)與圖象5。3正弦函數(shù)的性質(zhì)的資料,主要資料便是正弦函數(shù)的性質(zhì),教材經(jīng)過作圖、觀察、誘導(dǎo)公式等方法得出正弦函數(shù)y=sinx的性質(zhì)。并且教材突出了正弦函數(shù)圖象的重要性,能夠幫忙學(xué)生更深刻的認(rèn)識(shí)、理解、記憶正弦函數(shù)的性質(zhì)。

二、說學(xué)情

合理把握學(xué)情是上好一堂課的基礎(chǔ),本次課所應(yīng)對(duì)的學(xué)生群體具有以下特點(diǎn)。

高中的學(xué)生掌握了必須的基礎(chǔ)知識(shí),思維較敏捷,動(dòng)手能力較強(qiáng),但理解能力、自主學(xué)習(xí)能力較缺乏?;诖?,本節(jié)課注重引導(dǎo)學(xué)生動(dòng)腦思考,更富有啟發(fā)性。并且學(xué)生的自尊心較強(qiáng),所以對(duì)學(xué)生的評(píng)價(jià)注重先揚(yáng)后抑,鼓勵(lì)學(xué)生多多發(fā)言,還能夠?qū)W(xué)生進(jìn)行正確引導(dǎo)。

三、說教學(xué)目標(biāo)

根據(jù)以上對(duì)教材的分析以及對(duì)學(xué)情的把握,我制定了如下三維目標(biāo):

(一)知識(shí)與技能

會(huì)用正弦函數(shù)圖象研究和理解正弦函數(shù)的性質(zhì),能熟練運(yùn)用正弦函數(shù)的性質(zhì)解決問題。

(二)過程與方法

經(jīng)過正弦函數(shù)的圖象,探索正弦函數(shù)的性質(zhì),提升邏輯思考、歸納總結(jié)的能力。

(三)情感態(tài)度價(jià)值觀

經(jīng)過本節(jié)的`學(xué)習(xí)體驗(yàn)數(shù)學(xué)的嚴(yán)謹(jǐn)性,養(yǎng)成細(xì)心觀察、認(rèn)真分析、嚴(yán)謹(jǐn)認(rèn)真的良好思維習(xí)慣和不斷探求新知識(shí)的精神。

四、說教學(xué)重難點(diǎn)

本著新課程標(biāo)準(zhǔn),吃透教材,了解學(xué)生特點(diǎn)的基礎(chǔ)上我確定了以下重難點(diǎn)

(一)教學(xué)重點(diǎn)

由正弦函數(shù)的圖象得到正弦函數(shù)的性質(zhì)。

(二)教學(xué)難點(diǎn)

正弦函數(shù)的周期性和單調(diào)性。

五、說教法和學(xué)法

此刻的文盲不是不懂字的人,而是沒有掌握學(xué)習(xí)方法的人。因而在本節(jié)課我將采用講授法、探究法、練習(xí)法等教學(xué)方法,我在教學(xué)過程中異常重視對(duì)學(xué)生的引導(dǎo),讓學(xué)生從機(jī)械的學(xué)答中向?qū)W問轉(zhuǎn)變,從學(xué)會(huì)到會(huì)學(xué),成為真正學(xué)習(xí)的主人。

六、說教學(xué)過程

在這節(jié)課的教學(xué)過程中,我注重突出重點(diǎn),條理清晰,緊湊合理。各項(xiàng)活動(dòng)的安排也注重互動(dòng)、交流,限度的調(diào)動(dòng)學(xué)生參與課堂的積極性、主動(dòng)性。

(一)新課導(dǎo)入

首先是導(dǎo)入環(huán)節(jié),在這一環(huán)節(jié)中我將采用復(fù)習(xí)的導(dǎo)入方法。

我會(huì)讓學(xué)生回憶正弦函數(shù)的概念,以及上節(jié)課所學(xué)的正弦函數(shù)圖象,讓學(xué)生根據(jù)圖象思考正弦函數(shù)有哪些性質(zhì)從而引出課題——《正弦函數(shù)的性質(zhì)》。

這樣設(shè)計(jì)能夠讓學(xué)生對(duì)前面的知識(shí)進(jìn)行充分的回顧,為本節(jié)課的順利開展奠定基礎(chǔ)。

(二)新知探索

接下來是新課講授環(huán)節(jié),在這一環(huán)節(jié)我將采用講解法、小組合作探究的方式進(jìn)行。

讓學(xué)生自我經(jīng)過五點(diǎn)作圖法畫出正弦函數(shù)的圖象,并在大屏幕上展示正弦函數(shù)的標(biāo)準(zhǔn)圖象。

學(xué)生一邊看投影,一邊思考如下問題:

(1)正弦函數(shù)的定義域是什么

(2)正弦函數(shù)的值域是什么

(3)正弦函數(shù)的最值情景如何

(4)正弦函數(shù)的周期

(5)正弦函數(shù)的奇偶性

(6)正弦函數(shù)的遞增區(qū)間

給學(xué)生十分鐘的時(shí)間小組討論,之后小組代表發(fā)言,師生共同總結(jié)。

1、定義域:y=sinx定義域?yàn)镽

2、值域:引導(dǎo)學(xué)生回憶單位圓中的正弦函數(shù)線,發(fā)現(xiàn)值域?yàn)閇—1,1]

3、最值:根據(jù)值域的確定得到在何處取得最值以及函數(shù)的正負(fù)性。

4、周期性:經(jīng)過觀察圖象引導(dǎo)學(xué)生發(fā)現(xiàn)正弦函數(shù)的圖象是有規(guī)律不斷重復(fù)出現(xiàn)的,讓學(xué)生思考后發(fā)現(xiàn)是每隔2π重復(fù)出現(xiàn)一次,得出y=sinx的最小正周期是2π。之后經(jīng)過誘導(dǎo)公式證明。

5、奇偶性:在剛才經(jīng)過誘導(dǎo)公式證明后順勢(shì)提出公式,總結(jié)得到正弦函數(shù)是奇函數(shù)。

6、單調(diào)性:最終讓學(xué)生根據(jù)剛才所得到的結(jié)論自我嘗試總結(jié)正弦函數(shù)的單調(diào)性。

在探究完正弦函數(shù)性質(zhì)后,利用單位圓和正弦函數(shù)圖象理解和記憶正弦函數(shù)的性質(zhì),這樣的安排能夠讓學(xué)生及時(shí)鞏固正弦函數(shù)的性質(zhì),并且還能夠結(jié)合之前所學(xué)的單位圓,三角函數(shù)線等知識(shí),讓學(xué)生感受到知識(shí)間的聯(lián)系。

(三)課堂練習(xí)

第三環(huán)節(jié)是鞏固環(huán)節(jié),多媒體出示書上例題2:用五點(diǎn)法畫出函數(shù)的簡(jiǎn)圖,并根據(jù)圖象討論它的性質(zhì)。

經(jīng)過這樣的練習(xí),既鞏固了學(xué)生學(xué)過的知識(shí),又進(jìn)一步培養(yǎng)了學(xué)生理解、分析、推理的能力,趣味的知識(shí)在學(xué)生們的積極主動(dòng)的探索中顯得更有味道。

(四)小結(jié)作業(yè)

最終一個(gè)環(huán)節(jié)為小結(jié)作業(yè)環(huán)節(jié),關(guān)于課堂小結(jié),我打算讓學(xué)生自我來總結(jié)。這樣既發(fā)揮了學(xué)生的主體性,又能夠提高學(xué)生的總結(jié)概括能力,讓我在第一時(shí)間得到學(xué)習(xí)反饋,及時(shí)加以疏導(dǎo)。

在作業(yè)布置上,我讓學(xué)生思考余弦函數(shù)的圖象與性質(zhì)是什么樣的。

經(jīng)過比較靈活的題目呈現(xiàn),能夠讓學(xué)生結(jié)合本節(jié)課的知識(shí)進(jìn)而思考后續(xù)的知識(shí)。

七、說板書設(shè)計(jì)

我的板書設(shè)計(jì)遵循簡(jiǎn)介明了突出重點(diǎn)部分,以下是我的板書設(shè)計(jì):

(略)

高中數(shù)學(xué)三角函數(shù)PPT內(nèi)容優(yōu)秀課件 篇8

函數(shù)的奇偶性

函數(shù)的奇偶性是函數(shù)的重要性質(zhì),是對(duì)函數(shù)概念的深化.它把自變量取相反數(shù)時(shí)函數(shù)值間的關(guān)系定量地聯(lián)系在一起,反映在圖像上為:偶函數(shù)的圖像關(guān)于y軸對(duì)稱,奇函數(shù)的圖像關(guān)于坐標(biāo)原點(diǎn)成中心對(duì)稱.這樣,就從數(shù)、形兩個(gè)角度對(duì)函數(shù)的奇偶性進(jìn)行了定量和定性的分析.教材首先通過對(duì)具體函數(shù)的圖像及函數(shù)值對(duì)應(yīng)表歸納和抽象,概括出了函數(shù)奇偶性的準(zhǔn)確定義.然后,為深化對(duì)概念的理解,舉出了奇函數(shù)、偶函數(shù)、既是奇函數(shù)又是偶函數(shù)的函數(shù)和非奇非偶函數(shù)的實(shí)例.最后,為加強(qiáng)前后聯(lián)系,從各個(gè)角度研究函數(shù)的性質(zhì),講清了奇偶性和單調(diào)性的.聯(lián)系.這節(jié)課的重點(diǎn)是函數(shù)奇偶性的定義,難點(diǎn)是根據(jù)定義判斷函數(shù)的奇偶性.

教學(xué)目標(biāo):

1.通過具體函數(shù),讓學(xué)生經(jīng)歷奇函數(shù)、偶函數(shù)定義的討論,體驗(yàn)數(shù)學(xué)概念的建立過程,培養(yǎng)其抽象的概括能力.

2.理解、掌握函數(shù)奇偶性的定義,奇函數(shù)和偶函數(shù)圖像的特征,并能初步應(yīng)用定義判斷一些簡(jiǎn)單函數(shù)的奇偶性.

3.在經(jīng)歷概念形成的過程中,培養(yǎng)學(xué)生歸納、抽象概括能力,體驗(yàn)數(shù)學(xué)既是抽象的又是具體的任務(wù)分析

這節(jié)內(nèi)容學(xué)生在初中雖沒學(xué)過,但已經(jīng)學(xué)習(xí)過具有奇偶性的具體的函數(shù):正比例函數(shù)y=kx,反比例函數(shù),(k≠0),二次函數(shù)y=ax,(a≠0),故可在此基礎(chǔ)上,引入奇、偶函數(shù)的概念,以便于學(xué)生理解.在引入概念時(shí)始終結(jié)合具體函數(shù)的圖像,以增加直觀性,這樣更符合學(xué)生的認(rèn)知規(guī)律,同時(shí)為闡述奇、偶函數(shù)的幾何特征埋下了伏筆.對(duì)于概念可從代數(shù)特征與幾何特征兩個(gè)角度去分析,讓學(xué)生理解:奇函數(shù)、偶函數(shù)的定義域是關(guān)于原點(diǎn)對(duì)稱的非空數(shù)集;對(duì)于在有定義的奇函數(shù)y=f(x),一定有f(0)=0;既是奇函數(shù),又是偶函數(shù)的函數(shù)有f(x)=0,x∈R.在此基礎(chǔ)上,讓學(xué)生了解:奇函數(shù)、偶函數(shù)的矛盾概念———非奇非偶函數(shù).關(guān)于單調(diào)性與奇偶性關(guān)系,引導(dǎo)學(xué)生拓展延伸,可以取得理想效果.

一、問題情景

1.觀察如下兩圖,思考并討論以下問題:

(1)這兩個(gè)函數(shù)圖像有什么共同特征?

(2)相應(yīng)的兩個(gè)函數(shù)值對(duì)應(yīng)表是如何體現(xiàn)這些特征的?可以看到兩個(gè)函數(shù)的圖像都關(guān)于y軸對(duì)稱.從函數(shù)值對(duì)應(yīng)表可以看到,當(dāng)自變量x取一對(duì)相反數(shù)時(shí),相應(yīng)的兩個(gè)函數(shù)值相同.

對(duì)于函數(shù)f(x)=x,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事實(shí)上,對(duì)于R內(nèi)任意的一個(gè)x,都有f(-x)=(-x)2=x2=f(x).此時(shí),稱函數(shù)y=x2為偶函數(shù).

2.觀察函數(shù)f(x)=x和f(x)=的圖像,并完成下面的兩個(gè)函數(shù)值對(duì)應(yīng)表,然后說出這兩個(gè)函數(shù)有什么共同特征.

22可以看到兩個(gè)函數(shù)的圖像都關(guān)于原點(diǎn)對(duì)稱.函數(shù)圖像的這個(gè)特征,反映在解析式上就是:當(dāng)自變量x取一對(duì)相反數(shù)時(shí),相應(yīng)的函數(shù)值f(x)也是一對(duì)相反數(shù),即對(duì)任一x∈R都有f(-x)=-f(x).此時(shí),稱函數(shù)y=f(x)為奇函數(shù).

二、建立模型

由上面的分析討論引導(dǎo)學(xué)生建立奇函數(shù)、偶函數(shù)的定義

1.奇、偶函數(shù)的定義

如果對(duì)于函數(shù)f(x)的定義域內(nèi)任意一個(gè)x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫作奇函數(shù).如果對(duì)于函數(shù)f(x)的定義域內(nèi)任意一個(gè)x,都有f(-x)=f(x),那么函數(shù)f(x)就叫作偶函數(shù).

2.提出問題,組織學(xué)生討論

(1)如果定義在R上的函數(shù)f(x)滿足f(-2)=f(2),那么f(x)是偶函數(shù)嗎? (f(x)不一定是偶函數(shù))

(2)奇、偶函數(shù)的圖像有什么特征?

(奇、偶函數(shù)的圖像分別關(guān)于原點(diǎn)、y軸對(duì)稱) (3)奇、偶函數(shù)的定義域有什么特征? (奇、偶函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱)

三、解釋應(yīng)用[例題]

1.判斷下列函數(shù)的奇偶性.

注:①規(guī)范解題格式;②對(duì)于(5)要注意定義域x∈(-1,1].

2.已知:定義在R上的函數(shù)f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=x(1+x),求f(x)的表達(dá)式.

解:(1)任取x0,∴f(-x)=-x(1-x),

而f(x)是奇函數(shù),∴f(-x)=-f(x).∴f(x)=x(1-x).

(2)當(dāng)x=0時(shí),f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.

3.已知:函數(shù)f(x)是偶函數(shù),且在(-∞,0)上是減函數(shù),判斷f(x)在(0,+∞)上是增函數(shù),還是減函數(shù),并證明你的結(jié)論.

解:先結(jié)合圖像特征:偶函數(shù)的圖像關(guān)于y軸對(duì)稱,猜想f(x)在(0,+∞)上是增函數(shù),證明如下:

任取x1>x2>0,則-x1

∵f(x)在(-∞,0)上是減函數(shù),∴f(-x1)>f(-x2).又f(x)是偶函數(shù),∴f(x1)>f(x2).

∴f(x)在(0,+∞)上是增函數(shù).

思考:奇函數(shù)或偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的兩個(gè)區(qū)間上的單調(diào)性有何關(guān)系?

[練習(xí)]

1.已知:函數(shù)f(x)是奇函數(shù),在[a,b]上是增函數(shù)(b>a>0),問f(x)在[-b,-a]上的單調(diào)性如何.

2. f(x)=-x3|x|的大致圖像可能是()

3.函數(shù)f(x)=ax2+bx+c,(a,b,c∈R),當(dāng)a,b,c滿足什么條件時(shí),(1)函數(shù)f(x)是偶函數(shù).(2)函數(shù)f(x)是奇函數(shù). 4.設(shè)f(x),g(x)分別是R上的奇函數(shù)和偶函數(shù),并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.

四、拓展延伸

1.有既是奇函數(shù),又是偶函數(shù)的函數(shù)嗎?若有,有多少個(gè)? 2.設(shè)f(x),g(x)分別是R上的奇函數(shù),偶函數(shù),試研究:(1)F(x)=f(x)·g(x)的奇偶性. (2)G(x)=|f(x)|+g(x)的奇偶性.

3.已知a∈R,f(x)=a-,試確定a的值,使f(x)是奇函數(shù).

4.一個(gè)定義在R上的函數(shù),是否都可以表示為一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的和的形式?

高中數(shù)學(xué)三角函數(shù)PPT內(nèi)容優(yōu)秀課件 篇9

教學(xué)目標(biāo):

1.掌握基本事件的概念;

2.正確理解古典概型的兩大特點(diǎn):有限性、等可能性;

3.掌握古典概型的概率計(jì)算公式,并能計(jì)算有關(guān)隨機(jī)事件的概率.

教學(xué)重點(diǎn):

掌握古典概型這一模型.

教學(xué)難點(diǎn):

如何判斷一個(gè)實(shí)驗(yàn)是否為古典概型,如何將實(shí)際問題轉(zhuǎn)化為古典概型問題.

教學(xué)方法:

問題教學(xué)、合作學(xué)習(xí)、講解法、多媒體輔助教學(xué).

教學(xué)過程:

一、問題情境

1.有紅心1,2,3和黑桃4,5這5張撲克牌,將其牌點(diǎn)向下置于桌上,現(xiàn)從中任意抽取一張,則抽到的牌為紅心的概率有多大?

二、學(xué)生活動(dòng)

1.進(jìn)行大量重復(fù)試驗(yàn),用“抽到紅心”這一事件的頻率估計(jì)概率,發(fā)現(xiàn)工作量較大且不夠準(zhǔn)確;

2.(1)共有“抽到紅心1” “抽到紅心2” “抽到紅心3” “抽到黑桃4” “抽到黑桃5”5種情況,由于是任意抽取的,可以認(rèn)為出現(xiàn)這5種情況的可能性都相等;

(2)6個(gè);即“1點(diǎn)”、“2點(diǎn)”、“3點(diǎn)”、“4點(diǎn)”、“5點(diǎn)”和“6點(diǎn)”,

這6種情況的可能性都相等;

三、建構(gòu)數(shù)學(xué)

1.介紹基本事件的概念,等可能基本事件的'概念;

2.讓學(xué)生自己總結(jié)歸納古典概型的兩個(gè)特點(diǎn)(有限性)、(等可能性);

3.得出隨機(jī)事件發(fā)生的概率公式:

四、數(shù)學(xué)運(yùn)用

1.例題.

例1

有紅心1,2,3和黑桃4,5這5張撲克牌,將其牌點(diǎn)向下置于桌上,現(xiàn)從中任意抽取2張共有多少個(gè)基本事件?(用枚舉法,列舉時(shí)要有序,要注意“不重不漏”)

探究(1):一只口袋內(nèi)裝有大小相同的5只球,其中3只白球,2只黑球,從中一次摸出2只球,共有多少個(gè)基本事件?該實(shí)驗(yàn)為古典概型嗎?(為什么對(duì)球進(jìn)行編號(hào)?)

探究(2):拋擲一枚硬幣2次有(正,反)、(正,正)、(反,反)3個(gè)基本事件,對(duì)嗎?

學(xué)生活動(dòng):探究(1)如果不對(duì)球進(jìn)行編號(hào),一次摸出2只球可能有兩白、一黑一白、兩黑三種情況,“摸到兩黑”與“摸到兩白”的可能性相同;而事實(shí)上“摸到兩白”的機(jī)會(huì)要比“摸到兩黑”的機(jī)會(huì)大.記白球?yàn)?,2,3號(hào),黑球?yàn)?,5號(hào),通過枚舉法發(fā)現(xiàn)有10個(gè)基本事件,而且每個(gè)基本事件發(fā)生的可能性相同.

探究(2):拋擲一枚硬幣2次,有(正,正)、(正,反)、(反,正)、(反,反)四個(gè)基本事件.

(設(shè)計(jì)意圖:加深對(duì)古典概型的特點(diǎn)之一等可能基本事件概念的理解.)

例2

一只口袋內(nèi)裝有大小相同的5只球,其中3只白球,2只黑球,從中

一次摸出2只球,則摸到的兩只球都是白球的概率是多少?

問題:在運(yùn)用古典概型計(jì)算事件的概率時(shí)應(yīng)當(dāng)注意什么?

①判斷概率模型是否為古典概型

②找出隨機(jī)事件A中包含的基本事件的個(gè)數(shù)和試驗(yàn)中基本事件的總數(shù).

教師示范并總結(jié)用古典概型計(jì)算隨機(jī)事件的概率的步驟

例3

同時(shí)拋兩顆骰子,觀察向上的點(diǎn)數(shù),問:

(1)共有多少個(gè)不同的可能結(jié)果?

(2)點(diǎn)數(shù)之和是6的可能結(jié)果有多少種?

(3)點(diǎn)數(shù)之和是6的概率是多少?

問題:如何準(zhǔn)確的寫出“同時(shí)拋兩顆骰子”所有基本事件的個(gè)數(shù)?

學(xué)生活動(dòng):用課本第102頁圖3-2-2,可直觀的列出事件A中包含的基本事件的個(gè)數(shù)和試驗(yàn)中基本事件的總數(shù).

問題:點(diǎn)數(shù)之和是3的倍數(shù)的可能結(jié)果有多少種?

(介紹圖表法)

例4

甲、乙兩人作出拳游戲(錘子、剪刀、布),求:

(1)平局的概率;(2)甲贏的概率;(3)乙贏的概率.

設(shè)計(jì)意圖:進(jìn)一步提高學(xué)生對(duì)將實(shí)際問題轉(zhuǎn)化為古典概型問題的能力.

2.練習(xí).

(1)一枚硬幣連擲3次,只有一次出現(xiàn)正面的概率為_________.

(2)在20瓶飲料中,有3瓶已過了保質(zhì)期,從中任取1瓶,取到已過保質(zhì)期的飲料的概率為_________..

(3)第103頁練習(xí)1,2.

(4)從1,2,3,…,9這9個(gè)數(shù)字中任取2個(gè)數(shù)字,

①2個(gè)數(shù)字都是奇數(shù)的概率為_________;

②2個(gè)數(shù)字之和為偶數(shù)的概率為_________.

五、要點(diǎn)歸納與方法小結(jié)

本節(jié)課學(xué)習(xí)了以下內(nèi)容:

1.基本事件,古典概型的概念和特點(diǎn);

2.古典概型概率計(jì)算公式以及注意事項(xiàng);

3.求基本事件總數(shù)常用的方法:列舉法、圖表法.

高中數(shù)學(xué)三角函數(shù)PPT內(nèi)容優(yōu)秀課件 篇10

一、教學(xué)目標(biāo):

1.掌握用待定系數(shù)法求三角函數(shù)解析式的方法;

2.培養(yǎng)學(xué)生用已有的知識(shí)解決實(shí)際問題的能力;

3.能用計(jì)算機(jī)處理有關(guān)的近似計(jì)算問題.

二、重點(diǎn)難點(diǎn):

重點(diǎn)是待定系數(shù)法求三角函數(shù)解析式;

難點(diǎn)是選擇合理數(shù)學(xué)模型解決實(shí)際問題.

三、教學(xué)過程:

【創(chuàng)設(shè)情境】

三角函數(shù)能夠模擬許多周期現(xiàn)象,因此在解決實(shí)際問題中有著廣泛的應(yīng)用.

【自主學(xué)習(xí)探索研究】

1.學(xué)生自學(xué)完成P42例1

點(diǎn)O為做簡(jiǎn)諧運(yùn)動(dòng)的物體的平衡位置,取向右的方向?yàn)槲矬w位移的正方向,若已知振幅為3cm,周期為3s,且物體向右運(yùn)動(dòng)到距平衡位置最遠(yuǎn)處時(shí)開始計(jì)時(shí).

(1)求物體對(duì)平衡位置的位移x(cm)和時(shí)間t(s)之間的函數(shù)關(guān)系;

(2)求該物體在t=5s時(shí)的位置.

(教師進(jìn)行適當(dāng)?shù)脑u(píng)析.并回答下列問題:據(jù)物理常識(shí),應(yīng)選擇怎樣的函數(shù)式模擬物體的運(yùn)動(dòng);怎樣求和初相位θ;第二問中的“t=5s時(shí)的位置”與函數(shù)式有何關(guān)系?)

2.講解p43例2(題目加已改變)

3.講析P44例3

海水受日月的引力,在一定的時(shí)候發(fā)生漲落的現(xiàn)象叫潮汐,一般的早潮叫潮,晚潮叫汐.在通常的情況下,船在漲潮時(shí)駛進(jìn)航道,靠近船塢;卸貨后落潮是返回海洋.下面給出了某港口在某季節(jié)每天幾個(gè)時(shí)刻的水深.

(1)選用一個(gè)三角函數(shù)來近似描述這個(gè)港口的水深與時(shí)間的函數(shù)關(guān)系,并給出在整點(diǎn)時(shí)的近似數(shù)值.

(2)一條貨船的吃水深度(船底與水面的距離)為4米,安全條例規(guī)定至少要有1.5米的安全間隙(船底與海底的距離),該船何時(shí)能進(jìn)入港口?在港口能呆多久?

(3)若船的吃水深度為4米,安全間隙為1.5米,該船在2:00開始卸貨,吃水深度以每小時(shí)0.3米的速度減少,那么該船在什么時(shí)間必須停止卸貨,將船駛向較深的水域?

問題:

(1)選擇怎樣的數(shù)學(xué)模型反映該實(shí)際問題?

(2)圖表中的最大值與三角函數(shù)的哪個(gè)量有關(guān)?

(3)函數(shù)的周期為多少?

(4)“吃水深度”對(duì)應(yīng)函數(shù)中的哪個(gè)字母?

4.學(xué)生完成課本P45的練習(xí)1,3并評(píng)析

【提煉總結(jié)】

從以上問題可以發(fā)現(xiàn)三角函數(shù)知識(shí)在解決實(shí)際問題中有著十分廣泛的應(yīng)用,而待定系數(shù)法是三角函數(shù)中確定函數(shù)解析式最重要的方法.三角函數(shù)知識(shí)作為數(shù)學(xué)工具之一,在以后的學(xué)習(xí)中將經(jīng)常有所涉及.學(xué)數(shù)學(xué)是為了用數(shù)學(xué),通過學(xué)習(xí)我們逐步提高自己分析問題解決問題的能力.

四、布置作業(yè):

P46習(xí)題1.3第14、15題

幼師資料《高中數(shù)學(xué)三角函數(shù)PPT內(nèi)容優(yōu)秀課件(優(yōu)選10篇)》一文希望您能收藏!“幼兒教師教育網(wǎng)”是專門為給您提供幼師資料而創(chuàng)建的網(wǎng)站。同時(shí),yjs21.com還為您精選準(zhǔn)備了高中數(shù)學(xué)課件專題,希望您能喜歡!

相關(guān)推薦

  • 高中數(shù)學(xué)三角函數(shù)教學(xué)計(jì)劃方案 高中數(shù)學(xué)作文三大主科之一,對(duì)高考的拉分起到很大的作用。做好一個(gè)完整的高中數(shù)學(xué)教學(xué)工作計(jì)劃,才能使工作更加有效的快速完成。以下是小編為大家整理的高三數(shù)學(xué)教學(xué)工作計(jì)劃(精選9篇),希望能夠幫助到大家。高中數(shù)學(xué)三角函數(shù)教學(xué)計(jì)劃方案 篇1一、指導(dǎo)思想以學(xué)校和高三年部的教學(xué)計(jì)劃為目標(biāo),深化鉆研教材...
    2024-09-06 閱讀全文
  • 高一函數(shù)課件十三篇 請(qǐng)看下面欄目小編為您整理的“高一函數(shù)課件”相關(guān)的完整數(shù)據(jù),希望本文內(nèi)容能為您提供寶貴的幫助。老師根據(jù)事先準(zhǔn)備好的教案課件內(nèi)容給學(xué)生上課,每天老師都需要寫自己的教案課件。教案編寫是教師進(jìn)行教學(xué)投入的重要支持。...
    2024-06-04 閱讀全文
  • 暑假后開學(xué)第一課ppt內(nèi)容課件(優(yōu)選十篇) 在學(xué)習(xí)中,大家都經(jīng)常接觸主題班會(huì)吧?主題班會(huì)會(huì)前需要充分的準(zhǔn)備,盡可能發(fā)揮每個(gè)人的專長(zhǎng)、愛好和創(chuàng)造性。你知道什么樣的主題班會(huì)才是好的主題班會(huì)嗎?下面是小編收集整理的開學(xué)第一課主題班會(huì)的課件,歡迎大家分享。暑假后開學(xué)第一課ppt內(nèi)容課件 篇1教學(xué)目標(biāo):1.回顧上學(xué)期的各科成績(jī),明確取得成功...
    2024-09-06 閱讀全文
  • 高一函數(shù)課件 這篇“高一函數(shù)課件”是幼兒教師教育網(wǎng)小編精心制作的,希望您能夠喜歡它,并從中獲得幫助。教案和課件是每位教師為上課準(zhǔn)備的必要材料,但它們并非隨隨便便就能寫好。只有寫好教案,才能打造出完整的課堂教學(xué)。...
    2023-07-03 閱讀全文
  • 中班數(shù)學(xué)優(yōu)質(zhì)課教案《三角拼圖》 【活動(dòng)目標(biāo)】 1、在拼圖的過程中感知三角形與正方形、長(zhǎng)方形三者之間的拼合關(guān)系,體驗(yàn)圖形的空間變化。 2、樂意操作,大膽嘗試,感受拼圖活動(dòng)帶來的快樂。 【活動(dòng)準(zhǔn)備】 物質(zhì)準(zhǔn)備: 1、等腰直角三角形卡片若...
    2021-05-24 閱讀全文

高中數(shù)學(xué)作文三大主科之一,對(duì)高考的拉分起到很大的作用。做好一個(gè)完整的高中數(shù)學(xué)教學(xué)工作計(jì)劃,才能使工作更加有效的快速完成。以下是小編為大家整理的高三數(shù)學(xué)教學(xué)工作計(jì)劃(精選9篇),希望能夠幫助到大家。高中數(shù)學(xué)三角函數(shù)教學(xué)計(jì)劃方案 篇1一、指導(dǎo)思想以學(xué)校和高三年部的教學(xué)計(jì)劃為目標(biāo),深化鉆研教材...

2024-09-06 閱讀全文

請(qǐng)看下面欄目小編為您整理的“高一函數(shù)課件”相關(guān)的完整數(shù)據(jù),希望本文內(nèi)容能為您提供寶貴的幫助。老師根據(jù)事先準(zhǔn)備好的教案課件內(nèi)容給學(xué)生上課,每天老師都需要寫自己的教案課件。教案編寫是教師進(jìn)行教學(xué)投入的重要支持。...

2024-06-04 閱讀全文

在學(xué)習(xí)中,大家都經(jīng)常接觸主題班會(huì)吧?主題班會(huì)會(huì)前需要充分的準(zhǔn)備,盡可能發(fā)揮每個(gè)人的專長(zhǎng)、愛好和創(chuàng)造性。你知道什么樣的主題班會(huì)才是好的主題班會(huì)嗎?下面是小編收集整理的開學(xué)第一課主題班會(huì)的課件,歡迎大家分享。暑假后開學(xué)第一課ppt內(nèi)容課件 篇1教學(xué)目標(biāo):1.回顧上學(xué)期的各科成績(jī),明確取得成功...

2024-09-06 閱讀全文

這篇“高一函數(shù)課件”是幼兒教師教育網(wǎng)小編精心制作的,希望您能夠喜歡它,并從中獲得幫助。教案和課件是每位教師為上課準(zhǔn)備的必要材料,但它們并非隨隨便便就能寫好。只有寫好教案,才能打造出完整的課堂教學(xué)。...

2023-07-03 閱讀全文

【活動(dòng)目標(biāo)】 1、在拼圖的過程中感知三角形與正方形、長(zhǎng)方形三者之間的拼合關(guān)系,體驗(yàn)圖形的空間變化。 2、樂意操作,大膽嘗試,感受拼圖活動(dòng)帶來的快樂。 【活動(dòng)準(zhǔn)備】 物質(zhì)準(zhǔn)備: 1、等腰直角三角形卡片若...

2021-05-24 閱讀全文