幼兒教師教育網(wǎng),為您提供優(yōu)質(zhì)的幼兒相關資訊

八年級數(shù)學教案

發(fā)布時間:2024-10-03

老師會對課本中的主要教學內(nèi)容整理到教案課件中,所以老師寫教案可不能隨便對待。教案是評估學生學習效果的有效依據(jù)。我們聽了一場關于“八年級數(shù)學教案”的演講讓我們思考了很多,經(jīng)過閱讀本頁你的認識會更加全面!

八年級數(shù)學教案【篇1】

(一)、知識與技能:

(1)使學生了解因式分解的意義,理解因式分解的概念。

(2)認識因式分解與整式乘法的相互關系――互逆關系,并能運用這種關系尋求因式分解的方法。

(二)、過程與方法:

(1)由學生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關系,培養(yǎng)學生的觀察能力,進一步發(fā)展學生的類比思想。

(2)由整式乘法的逆運算過渡到因式分解,發(fā)展學生的逆向思維能力。

(3)通過對分解因式與整式的乘法的觀察與比較,培養(yǎng)學生的分析問題能力與綜合應用能力。

(三)、情感態(tài)度與價值觀:讓學生初步感受對立統(tǒng)一的辨證觀點以及實事求是的科學態(tài)度。

難點:正確找出多項式各項的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。

(1)7/9 ×13-7/9 ×6+7/9 ×2= ;

(2)-2.67×132+25×2.67+7×2.67= ;

(3)992C1= 。

設計意圖:

如果說學生對因式分解還相當陌生的話,相信學生對用簡便方法進行計算應該相當熟悉.引入這一步的目的旨在讓學生通過回顧用簡便方法計算――因數(shù)分解這一特殊算法,使學生通過類比很自然地過渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環(huán)節(jié)設計的計算992C1的值是為了降低下一環(huán)節(jié)的難度,為下一環(huán)節(jié)的理解搭一個臺階.

注意事項:學生對于(1)(2)兩小題逆向利用乘法的分配律進行運算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運算則有一定的困難,因此,有必要引導學生復習七年級所學過的整式的乘法運算中的平方差公式,幫助他們順利地逆向運用平方差公式。

P165的探究(略);

2. 看誰想得快:993C99能被哪些數(shù)整除?你是怎么得出來的?

設計意圖:

引導學生把這個式子分解成幾個數(shù)的積的形式,繼續(xù)強化學生對因數(shù)分解的理解,為學生類比因式分解提供必要的精神準備。

(2)(a+b+c)= ;

(3)(+4)(-4)= ;

(4)(-3)2= ;

(5)a(a+1)(a-1)= ;

(2)3x2-3x= ;

(3)2-16= ;

(4)a3-a= ;

(5)2-6+9= 。

在第一組的整式乘法的計算上,學生通過對第一組式子的觀察得出第二組式子的結(jié)果,然后通過對這兩組式子的結(jié)果的比較,使學生對因式分解有一個初步的意識,由整式乘法的逆運算逐步過渡到因式分解,發(fā)展學生的逆向思維能力。

比較以下兩種運算的聯(lián)系與區(qū)別:

在第三環(huán)節(jié)的運算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?

八年級數(shù)學教案【篇2】

學習目標

1、通過運算多項式乘法,來推導平方差公式,學生的認識由一般法則到特殊法則的能力。

2、通過親自動手、觀察并發(fā)現(xiàn)平方差公式的結(jié)構(gòu)特征,并能從廣義上理解公式中字母的。含義。

3、初步學會運用平方差公式進行計算。

學習重難點重點:

平方差公式的推導及應用。

難點是對公式中a,b的廣泛含義的理解及正確運用。

自學過程設計教學過程設計

看一看

認真閱讀教材,記住以下知識:

文字敘述平方差公式:_________________

用字母表示:________________

做一做:

1、完成下列練習:

①(m+n)(p+q)

②(a+b)(x-y)

③(2x+3y)(a-b)

④(a+2)(a-2)

⑤(3-x)(3+x)

⑥(2m+n)(2m-n)

想一想

你還有哪些地方不是很懂?請寫出來。

_______________________________

_______________________________

________________________________、

1、下列計算對不對?若不對,請在橫線上寫出正確結(jié)果、

(1)(x-3)(x+3)=x2-3( ),__________;

(2)(2x-3)(2x+3)=2x2-9( ),_________;

(3)(-x-3)(x-3)=x2-9( ),_________;

(4)(2xy-1)(2xy+1)=2xy2-1( ),________、

2、(1)(3a-4b)( )=9a2-16b2; (2)(4+2x)( )=16-4x2;

(3)(-7-x)( )=49-x2; (4)(-a-3b)(-3b+a)=_________、

3、計算:50×49=_________、

應用探究

1、幾何解釋平方差公式

展示:邊長a的大正方形中有一個邊長為b的小正方形。

(1)請計算圖的陰影部分的面積(讓學生用正方形的面積公式計算)。

(2)小明將陰影部分拼成一個長方形,這個長方形長與寬是多少?你能表示出它的面積嗎?

2、用平方差公式計算

(1)103×93 (2)59、8×60、2

拓展提高

1、閱讀題:

我們在計算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)時,發(fā)現(xiàn)直接運算很麻煩,如果在算式前乘以(2-1),即1,原算式的值不變,而且還使整個算式能用乘法公式計算、解答過程如下:

原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)

=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)

=(24-1)(24+1)(28+1)(216+1)(232+1)

=……=264-1

你能用上述方法算出(3+1)(32+1)(34+1)(38+1)(316+1)的值嗎?請試試看!

2、仔細觀察,探索規(guī)律:

(x-1)(x+1)=x2-1

(x-1)(x2+x+1)=x3-1

(x-1)(x3+x2+x+1)=x4-1

(x-1)(x4+x3+x2+x+1)=x5-1

……

(1)試求25+24+23+22+2+1的值;

(2)寫出22006+22005+22004+…+2+1的個位數(shù)、

堂堂清

一、選擇題

1、下列各式中,能用平方差公式計算的是( )

(1)(a-2b)(-a+2b);

(2)(a-2b)(-a-2b);

(3)(a-2b)(a+2b);

(4)(a-2b)(2a+b)、

八年級數(shù)學教案【篇3】

與三角形有關的線段

.1 三角形的邊

1.理解三角形的概念,認識三角形的頂點、邊、角,會數(shù)三角形的個數(shù).(重點)

2.能利用三角形的三邊關系判斷三條線段能否構(gòu)成三角形.(重點)

3.三角形在實際生活中的應用.(難點)

一、情境導入

出示金字塔、戰(zhàn)機、大橋等圖片,讓學生感受生活中的三角形,體會生活中處處有數(shù)學.

教師利用多媒體演示三角形的形成過程,讓學生觀察.

問:你能不能給三角形下一個完整的定義?

二、合作探究

探究點一:三角形的概念

圖中的銳角三角形有( )

解析:(1)以A為頂點的銳角三角形有△ABC、△ADC共2個;(2)以E為頂點的銳角三角形有△EDC共1個.所以圖中銳角三角形的個數(shù)有2+1=3(個).故選B.

方法總結(jié):數(shù)三角形的個數(shù),可以按照數(shù)線段條數(shù)的方法,如果一條線段上有n個點,那么就有n(n-1)2條線段,也可以與線段外的一點組成n(n-1)2個三角形.

探究點二:三角形的三邊關系

【類型一】 判定三條線段能否組成三角形

以下列各組線段為邊,能組成三角形的是( )

c,3c,5c

,6c,10c

,1c,3c

,4c,9c

解析:選項A中2+3=5,不能組成三角形,故此選項錯誤;選項B中5+6>10,能組成三角形,故此選項正確;選項C中1+1

方法總結(jié):判定三條線段能否組成三角形,只要判定兩條較短的線段長度之和大于第三條線段的長度即可.

【類型二】 判斷三角形邊的取值范圍

一個三角形的三邊長分別為4,7,那么的取值范圍是( )

c.-3

解析:∵三角形的三邊長分別為4,7,∴7-4

方法總結(jié):判斷三角形邊的取值范圍要同時運用兩邊之和大于第三邊,兩邊之差小于第三邊.有時還要結(jié)合不等式的知識進行解決.

【類型三】 等腰三角形的三邊關系

已知一個等腰三角形的兩邊長分別為4和9,求這個三角形的周長.

解析:先根據(jù)等腰三角形兩腰相等的性質(zhì)可得出第三邊長的兩種情況,再根據(jù)兩邊和大于第三邊來判斷能否構(gòu)成三角形,從而求解.

解:根據(jù)題意可知等腰三角形的三邊可能是4,4,9或4,9,9,∵4+49,故4,9,9能構(gòu)成三角形,∴它的周長是4+9+9=22.

方法總結(jié):在求三角形的邊長時,要注意利用三角形的三邊關系驗證所求出的邊長能否組成三角形.

【類型四】 三角形三邊關系與絕對值的綜合

若a,b,c是△ABC的三邊長,化簡|a-b-c|+|b-c-a|+|c+a-b|.

解析:根據(jù)三角形三邊關系:兩邊之和大于第三邊,兩邊之差小于第三邊,來判定絕對值里的式子的正負,然后去絕對值符號進行計算即可.

解:根據(jù)三角形的三邊關系,兩邊之和大于第三邊,得a-b-c0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.

方法總結(jié):絕對值的化簡首先要判斷絕對值符號里面的式子的正負,然后根據(jù)絕對值的性質(zhì)將絕對值的符號去掉,最后進行化簡.此類問題就是根據(jù)三角形的三邊關系,判斷絕對值符號里面式子的正負,然后進行化簡.

三、板書設計

三角形的邊

1.三角形的概念:

由不在同一直線上的三條線段首尾順次相接所組成的圖形.

2.三角形的三邊關系:

兩邊之和大于第三邊,兩邊之差小于第三邊.

本節(jié)課讓學生經(jīng)歷一個探究解決問題的過程,抓住“任意的三條線段能不能圍成一個三角形”引發(fā)學生探究的欲望,圍繞這個問題讓學生自己動手操作,發(fā)現(xiàn)有的能圍成,有的不能圍成,由學生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關系,重點研究“能圍成三角形的三條邊之間到底有什么關系”.通過觀察、驗證、再操作,最終發(fā)現(xiàn)三角形任意兩邊之和大于第三邊這一結(jié)論.這樣教學符合學生的認知特點,既提高了學生學習的興趣,又增強了學生的動手能力.

八年級數(shù)學教案【篇4】

教學內(nèi)容分析:

⑴ 學習特殊的平行四邊形—正方形,它的特殊的性質(zhì)和判定。

⑵前面學習了平行四邊形、矩形菱形,類比他們的性質(zhì)與判斷,有利于對正方形的研究。

⑶ 對本節(jié)的學習,繼續(xù)培養(yǎng)學生分類研究的思想,并且建立新舊知識的聯(lián)系,類比的基礎上進行歸納,梳理知識,進一步發(fā)展學生的推理能力。

學生分析:

⑴學生在小學初步認識了正方形,并且本節(jié)課之前,學生又學習了幾種平行四邊形,已經(jīng)具備了觀察研究平行四邊形的經(jīng)驗與知識基礎。

⑵學生在上幾節(jié)已有了推理的經(jīng)歷,但是對于證明,學生的思維能力還不成熟,有待于提高。

教學目標:

⑴知識與技能:了解正方形是特殊的平行四邊形,掌握它的性質(zhì)和判定,會利用性質(zhì)與判定進行簡單的說理。

⑵過程與方法:通過類比前邊的四邊形的研究,探索并歸納正方形的性質(zhì)與判定。通過運用提高學生的推理能力。

⑶情感態(tài)度與價值觀:在學習中體會正方形的完美性,通過活動獲得成功的喜悅與自信。

重點:

掌握正方形的性質(zhì)與判定,并進行簡單的推理。

難點:

探索正方形的判定,發(fā)展學生的推理能

教學方法:

類比與探究

教具準備:

可以活動的四邊形模型。

教學過程:

一:復習鞏固,建立聯(lián)系。

【教師活動】

問題設置:①平行四邊形、矩形,菱形各有哪些性質(zhì)?

②( ) 的四邊形是平行四邊形。( )的平行四邊形是矩形。( )的平行四邊形是菱形。( )的四邊形是矩形。( )的四邊形是菱形。

【學生活動】

學生回憶,并舉手回答,對于填空題,讓更多的學生參與,說出更多的答案。

【教師活動】

評析學生的結(jié)果,給予表揚。

總結(jié)性質(zhì)從邊角對角線考慮,在填空時也考慮這幾方面之外,還應該考慮三者之間的聯(lián)系與區(qū)別。

演示平行四邊形變?yōu)榫匦瘟庑蔚倪^程。

二:動手操作,探索發(fā)現(xiàn)。

活動一:拿出一張矩形紙片,拉起一角,使其寬AB落在長AD邊上,如下圖所示,沿著B′E剪下,能得到什么圖形?

【學生活動】

學生拿出自備矩形紙片,動手操作,不難發(fā)現(xiàn)它是正方形。

設置問題:①什么是正方形?

觀察發(fā)現(xiàn),從活動中體會。

【教師活動】:演示矩形變?yōu)檎叫蔚倪^程,菱形變?yōu)檎叫蔚倪^程。

【學生活動】認真觀察變化過程,思考之間的聯(lián)系,舉手回答設置問題。

設置問題②正方形是矩形嗎,是菱形嗎?是平行四邊形嗎?為什么?

【學生活動】

小組討論,分組回答。

【教師活動】

總結(jié)板書:

㈠(一組鄰邊相等)的矩形是正方形,(一個角是直角)的菱形是正方形。

設置問題③正方形有那些性質(zhì)?

【學生活動】

小組討論,舉手搶答。

【教師活動】

表揚學生發(fā)言,板書學生發(fā)現(xiàn),㈡正方形 每一條對角線平分一組對角

活動二:拿出活動一得到的正方形折一折,正方形是軸對稱圖形嗎?有幾條對稱軸?

學生活動

折紙發(fā)現(xiàn),說出自己的發(fā)現(xiàn)。得到正方形的又一性質(zhì)。正方形是軸對稱圖形。

教師活動

演示從平行四邊形變?yōu)檎叫蔚倪^程,擦去板書㈠中的括號內(nèi)容,出示一下問題:你還可以怎樣填空?

( )的菱形是正方形,( )的矩形是正方形,( )的平行四邊形是正方形,( )的四邊形是正方形。

學生活動

小組充分交流,表達不同的意見。

教師活動

評析活動,總結(jié)發(fā)現(xiàn):

一組鄰邊相等的矩形是正方形,對角線互相平分的矩形是正方形;

有一個角是直角的菱形是正方形,對角線相等的菱形是正方形,;

有一組鄰邊相等且有一個角是直角的平行四邊形是正方形,對角線相等且互相平分的平行四邊形是正方形;

四邊相等且有一角是直角的四邊形是正方形,對角線相等且互相垂直平分的四邊形是正方形。

以上是正方形的`判定方法。

正方形是一個多么完美的平行四邊形呀?大家互相說一說,它的完美體現(xiàn)在哪里?生活中有哪些利用正方形的例子?

學生交流,感受正方形

三,應用體驗,推理證明。

出示例一:正方形ABCD的兩條對角線AC,BD交與O,AB長4cm,求AC,AO長,及 的度數(shù)。

方法一解:∵四邊形ABCD是正方形

∴∠ABC=90°(正方形的四個角是直角)。

BC=AB=4cm(正方形的四條邊相等)

∴ =45°(等腰直角三角形的底角是45°)

∴利用勾股定理可知,AC= = =4 cm

∵AO= AC(正方形的對角線互相平分)

∴AO= ×4 =2 cm

方法二:證明△AOB是等腰直角三角形,即可得證。

學生活動

獨立思考,寫出推理過程,再進行小組討論,并且各小組指派代表寫在黑板上,共同交流。

教師活動

總結(jié)解題方法,從正方形的性質(zhì)全面考慮,準確利用條件,減少麻煩。評析解題步驟,表揚突出學生。

出示例二:在正方形ABCD中,E、F、G、H 分別在它的四條邊上,且AE=BF=CG=DH,四邊形EFGH是什么特殊的四邊形,你是如何判斷的?

學生活動

小組交流,分析題意,整理思路,指名口答。

教師活動

說明思路,從已知出發(fā)或者從已有的判定加以選擇。

四,歸納新知,梳理知識。

這一節(jié)課你有什么收獲?

學生舉手談論自己的收獲。

請把平行四邊形,矩形,菱形,正方形分別填寫在下圖的ABCDC處,說明它們的關系。

發(fā)表評論

八年級數(shù)學教案【篇5】

【教學目標】

1、了解三角形的中位線的概念

2、了解三角形的中位線的性質(zhì)

3、探索三角形的中位線的性質(zhì)的一些簡單的應用

【教學重點、難點】

重點:三角形的中位線定理。

難點:三角形的中位線定理的證明中添加輔助線的思想方法。

【教學過程】

(一)創(chuàng)設情景,引入新課

1、如圖,為了測量一個池塘的寬BC,在池塘一側(cè)的平地上選一點A,再分別找出線段AB、AC的中點D、E,若測出DE的長,就可以求出池塘的寬BC,你知道這是為什么嗎?

2、動手操作:剪一刀,將一張三角形紙片剪成一張三角形紙片和一張?zhí)菪渭埰?/p>

(1)如果要求剪得的兩張紙片能拼成平行的四邊形,剪痕的位置有什么要求?

(2)要把所剪得的兩個圖形拼成一個平行四邊形,可將其中的三角形做怎樣的圖形變換?

3、引導學生概括出中位線的概念。

問題:(1)三角形有幾條中位線?(2)三角形的中位線與中線有什么區(qū)別?

啟發(fā)學生得出:三角形的中位線的兩端點都是三角形邊的中點,而三角形中線只有一個端點是邊中點,另一端點上三角形的一個頂點。

4、猜想:DE與BC的關系?(位置關系與數(shù)量關系)

(二)、師生互動,探究新知

1、證明你的猜想

引導學生寫出已知,求證,并啟發(fā)分析。

(已知:⊿ABC中,D、E分別是AB、AC的中點,求證:DE∥BC,DE=1/2BC)

啟發(fā)1:證明直線平行的方法有哪些?(由角的相等或互補得出平行,由平行四邊形得出平行等)

啟發(fā)2:證明線段的倍分的方法有哪些?(截長或補短)

學生分小組討論,教師巡回指導,經(jīng)過分析后,師生共同完成推理過程,板書證明過程,強調(diào)有其他證法。

證明:如圖,以點E為旋轉(zhuǎn)中心,把⊿ADE繞點E,按順時針方向旋轉(zhuǎn)180゜,得到⊿CFE,則D,E,F(xiàn)同在一直線上,DE=EF,且⊿ADE≌⊿CFE。

∴∠ADE=∠F,AD=CF,

∴AB∥CF。

又∵BD=AD=CF,

∴四邊形BCFD是平行四邊形(一組對邊平行且相等的四邊形是平行四邊形),

∴DF∥BC(根據(jù)什么?),

∴DE 1/2BC

2、啟發(fā)學生歸納定理,并用文字語言表達:三角形中位線平行于第三邊且等于第三邊的一半。

(三)學以致用、落實新知

1、練一練:已知三角形邊長分別為6、8、10,順次連結(jié)各邊中點所得的三角形周長是多少?

2、想一想:如果⊿ABC的三邊長分別為a、b、c,AB、BC、AC各邊中點分別為D、E、F,則⊿DEF的周長是多少?

3、例題:已知:如圖,在四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點。

求證:四邊形EFGH是平行四邊形。

啟發(fā)1:由E,F(xiàn)分別是AB,BC的中點,你會聯(lián)想到什么圖形?

啟發(fā)2:要使EF成為三角的中位線,應如何添加輔助線?應用三角形的中位線定理,能得到什么?你能得出EF∥GH嗎?為什么?

證明:如圖,連接AC。

∵EF是⊿ABC的中位線,

∴EF 1/2AC(三角形的中位線平行于第三邊,并且等于第三邊的一半)。

同理,HG 1/2AC。

∴EF HG。

∴四邊形EFGH是平行四邊形(一組對邊平行并且相等的四邊形是平行四邊形)

挑戰(zhàn):順次連結(jié)上題中,所得到的四邊形EFGH四邊中點得到一個四邊形,繼續(xù)作下去。。。你能得出什么結(jié)論?

(四)學生練習,鞏固新知

1、請回答引例中的問題(1)

2、如圖,在四邊形ABCD中,AB=CD,M,N,P分別是AD,BC, BD的中點。求證:∠PNM=∠PMN

(五)小結(jié)回顧,反思提高

今天你學到了什么?還有什么困惑?

八年級數(shù)學教案【篇6】

教學內(nèi)容分析:

⑴ 學習特殊的平行四邊形—正方形,它的特殊的性質(zhì)和判定。

⑵前面學習了平行四邊形、矩形菱形,類比他們的性質(zhì)與判斷,有利于對正方形的研究。

⑶ 對本節(jié)的學習,繼續(xù)培養(yǎng)學生分類研究的思想,并且建立新舊知識的聯(lián)系,類比的基礎上進行歸納,梳理知識,進一步發(fā)展學生的推理能力。

學生分析:

⑴學生在小學初步認識了正方形,并且本節(jié)課之前,學生又學習了幾種平行四邊形,已經(jīng)具備了觀察研究平行四邊形的經(jīng)驗與知識基礎。

⑵學生在上幾節(jié)已有了推理的經(jīng)歷,但是對于證明,學生的思維能力還不成熟,有待于提高。

教學目標:

⑴知識與技能:了解正方形是特殊的平行四邊形,掌握它的性質(zhì)和判定,會利用性質(zhì)與判定進行簡單的說理。

⑵過程與方法:通過類比前邊的四邊形的研究,探索并歸納正方形的性質(zhì)與判定。通過運用提高學生的推理能力。

⑶情感態(tài)度與價值觀:在學習中體會正方形的完美性,通過活動獲得成功的喜悅與自信。

重點:

掌握正方形的性質(zhì)與判定,并進行簡單的推理。

難點:

探索正方形的判定,發(fā)展學生的推理能

教學方法:

類比與探究

教具準備:

可以活動的四邊形模型。

教學過程:

一:復習鞏固,建立聯(lián)系。

【教師活動】

問題設置:①平行四邊形、矩形,菱形各有哪些性質(zhì)?

②( ) 的四邊形是平行四邊形。( )的平行四邊形是矩形。( )的平行四邊形是菱形。( )的四邊形是矩形。( )的四邊形是菱形。

【學生活動】

學生回憶,并舉手回答,對于填空題,讓更多的學生參與,說出更多的答案。

【教師活動】

評析學生的結(jié)果,給予表揚。

總結(jié)性質(zhì)從邊角對角線考慮,在填空時也考慮這幾方面之外,還應該考慮三者之間的聯(lián)系與區(qū)別。

演示平行四邊形變?yōu)榫匦瘟庑蔚倪^程。

二:動手操作,探索發(fā)現(xiàn)。

活動一:拿出一張矩形紙片,拉起一角,使其寬AB落在長AD邊上,如下圖所示,沿著B′E剪下,能得到什么圖形?

【學生活動】

學生拿出自備矩形紙片,動手操作,不難發(fā)現(xiàn)它是正方形。

設置問題:①什么是正方形?

觀察發(fā)現(xiàn),從活動中體會。

【教師活動】:演示矩形變?yōu)檎叫蔚倪^程,菱形變?yōu)檎叫蔚倪^程。

【學生活動】認真觀察變化過程,思考之間的聯(lián)系,舉手回答設置問題。

設置問題②正方形是矩形嗎,是菱形嗎?是平行四邊形嗎?為什么?

【學生活動】

小組討論,分組回答。

【教師活動】

總結(jié)板書:

㈠(一組鄰邊相等)的矩形是正方形,(一個角是直角)的菱形是正方形。

設置問題③正方形有那些性質(zhì)?

【學生活動】

小組討論,舉手搶答。

【教師活動】

表揚學生發(fā)言,板書學生發(fā)現(xiàn),㈡正方形 每一條對角線平分一組對角

活動二:拿出活動一得到的正方形折一折,正方形是軸對稱圖形嗎?有幾條對稱軸?

學生活動

折紙發(fā)現(xiàn),說出自己的發(fā)現(xiàn)。得到正方形的又一性質(zhì)。正方形是軸對稱圖形。

教師活動

演示從平行四邊形變?yōu)檎叫蔚倪^程,擦去板書㈠中的括號內(nèi)容,出示一下問題:你還可以怎樣填空?

( )的菱形是正方形,( )的矩形是正方形,( )的平行四邊形是正方形,( )的四邊形是正方形。

學生活動

小組充分交流,表達不同的意見。

教師活動

評析活動,總結(jié)發(fā)現(xiàn):

一組鄰邊相等的矩形是正方形,對角線互相平分的矩形是正方形;

有一個角是直角的菱形是正方形,對角線相等的菱形是正方形,;

有一組鄰邊相等且有一個角是直角的平行四邊形是正方形,對角線相等且互相平分的平行四邊形是正方形;

四邊相等且有一角是直角的四邊形是正方形,對角線相等且互相垂直平分的四邊形是正方形。

以上是正方形的`判定方法。

正方形是一個多么完美的平行四邊形呀?大家互相說一說,它的完美體現(xiàn)在哪里?生活中有哪些利用正方形的例子?

學生交流,感受正方形

三,應用體驗,推理證明。

出示例一:正方形ABCD的兩條對角線AC,BD交與O,AB長4cm,求AC,AO長,及 的度數(shù)。

方法一解:∵四邊形ABCD是正方形

∴∠ABC=90°(正方形的四個角是直角)。

BC=AB=4cm(正方形的四條邊相等)

∴ =45°(等腰直角三角形的底角是45°)

∴利用勾股定理可知,AC= = =4 cm

∵AO= AC(正方形的對角線互相平分)

∴AO= ×4 =2 cm

方法二:證明△AOB是等腰直角三角形,即可得證。

學生活動

獨立思考,寫出推理過程,再進行小組討論,并且各小組指派代表寫在黑板上,共同交流。

教師活動

總結(jié)解題方法,從正方形的性質(zhì)全面考慮,準確利用條件,減少麻煩。評析解題步驟,表揚突出學生。

出示例二:在正方形ABCD中,E、F、G、H 分別在它的四條邊上,且AE=BF=CG=DH,四邊形EFGH是什么特殊的四邊形,你是如何判斷的?

學生活動

小組交流,分析題意,整理思路,指名口答。

教師活動

說明思路,從已知出發(fā)或者從已有的判定加以選擇。

四,歸納新知,梳理知識。

這一節(jié)課你有什么收獲?

學生舉手談論自己的收獲。

請把平行四邊形,矩形,菱形,正方形分別填寫在下圖的ABCDC處,說明它們的關系。

發(fā)表評論

八年級數(shù)學教案設計篇2

一、平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。

1、平移

2、平移的性質(zhì):

⑴經(jīng)過平移,對應點所連的線段平行且相等;

⑵對應線段平行且相等,對應角相等。

⑶平移不改變圖形的大小和形狀(只改變圖形的位置)。

(4)平移后的圖形與原圖形全等。

3、簡單的平移作圖

①確定個圖形平移后的位置的條件:

⑴需要原圖形的位置;

⑵需要平移的方向;

⑶需要平移的距離或一個對應點的位置。

②作平移后的圖形的方法:

⑴找出關鍵點;

⑵作出這些點平移后的對應點;

⑶將所作的對應點按原來方式順次連接,所得的;

二、旋轉(zhuǎn):在平面內(nèi),將一個圖形繞一個定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn),這個定點稱為旋轉(zhuǎn)中心,轉(zhuǎn)動的角稱為旋轉(zhuǎn)角。

1、旋轉(zhuǎn)

2、旋轉(zhuǎn)的性質(zhì)

⑴旋轉(zhuǎn)變化前后,對應線段,對應角分別相等,圖形的大小,形狀都不改變(只改變圖形的位置)。

⑵旋轉(zhuǎn)過程中,圖形上每一個點都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動了相同的角度。

⑶任意一對對應點與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對應點到旋轉(zhuǎn)中心的距離相等。

⑷旋轉(zhuǎn)前后的兩個圖形全等。

3、簡單的旋轉(zhuǎn)作圖

⑴已知原圖,旋轉(zhuǎn)中心和一對對應點,求作旋轉(zhuǎn)后的圖形。

⑵已知原圖,旋轉(zhuǎn)中心和一對對應線段,求作旋轉(zhuǎn)后的圖形。

⑶已知原圖,旋轉(zhuǎn)中心和旋轉(zhuǎn)角,求作旋轉(zhuǎn)后的圖形。

三、分析組合圖案的形成

①確定組合圖案中的“基本圖案”

②發(fā)現(xiàn)該圖案各組成部分之間的內(nèi)在聯(lián)系

③探索該圖案的形成過程,類型有:

⑴平移變換;

⑵旋轉(zhuǎn)變換;

⑶軸對稱變換;

⑷旋轉(zhuǎn)變換與平移變換的組合;

⑸旋轉(zhuǎn)變換與軸對稱變換的組合;

⑹軸對稱變換與平移變換的組合。

八年級數(shù)學教案設計篇3

一、教學目標:

1、會根據(jù)頻數(shù)分布表求加權(quán)平均數(shù),從而解決一些實際問題

2、會用計算器求加權(quán)平均數(shù)的值

3、會運用樣本估計總體的方法來獲得對總體的認識

二、重點、難點:

1、重點:根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)

2、難點:根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)

三、教學過程:

1、復習

組中值的定義:上限與下限之間的中點數(shù)值稱為組中值,它是各組上下限數(shù)值的簡單平均,即組中值=(上限+上限)/2。

因為在根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值過程中要用到組中值去代替一組數(shù)據(jù)中的每個數(shù)據(jù)的值,所以有必要在這里復習組中值定義。

應給學生介紹為什么可以利用組中值代替一組數(shù)據(jù)中的每個數(shù)據(jù)的值,以及這樣代替的好處、不妨舉一個例子,在一組中如果數(shù)據(jù)分布較為均勻時,比如教材P140探究問題的表格中的第三組數(shù)據(jù),它的范圍是41≤X≤61,共有20個數(shù)據(jù),若分布較為平均,41、42、43、44…60個出現(xiàn)1次,那么這組數(shù)據(jù)的和為41+42+…+60=1010。而用組中值51去乘以頻數(shù)20恰好為1020≈1010,即當數(shù)據(jù)分布較為平均時組中值恰好近似等于它的平均數(shù)。所以利用組中值X頻數(shù)去代替這組數(shù)據(jù)的和還是比較合理的,而且這樣做的最大好處是簡化了計算量。

為了更好的理解這種近似計算的方法和合理性,可以讓學生去讀統(tǒng)計表,體會表格的實際意義。

2、教材P140探究欄目的意圖

①、主要是想引出根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值的計算方法。

②、加深了對“權(quán)”意義的理解:當利用組中值近似取代替一組數(shù)據(jù)中的平均值時,頻數(shù)恰好反映這組數(shù)據(jù)的輕重程度,即權(quán)。

這個探究欄目也可以幫助學生去回憶、復習七年級下的關于頻數(shù)分布表的一些內(nèi)容,比如組、組中值及頻數(shù)在表中的具體意義。

3、教材P140的思考的意圖。

①、使學生通過思考這兩個問題過程中體會利用統(tǒng)計知識可以解決生活中的許多實際問題。

②、幫助學生理解表中所表達出來的信息,培養(yǎng)學生分析數(shù)據(jù)的能力。

4、利用計算器計算平均值

這部分篇幅較小,與傳統(tǒng)教材那種詳細介紹計算器使用方法產(chǎn)生明顯對比。一則由于學校中學生使用計算器不同,其操作過程有差別亦不同,再者,各種計算器的使用說明書都有詳盡介紹,同時也說明在今后中考趨勢仍是不允許使用計算器。所以本節(jié)課的重點內(nèi)容不是利用計算器求加權(quán)平均數(shù),但是掌握其使用方法確實可以運算變得簡單。統(tǒng)計中一些數(shù)據(jù)較大、較多的計算也變得容易些了。

5、運用樣本估計總體

要使學生掌握在哪些情況下需要通過用樣本估計總體的方法來獲得對總體的認識;一是所要考察的對象很多,二是考察本身帶有破壞性;教材P142例3,這個例子就屬于考察本身帶有破壞性的情況。

八年級數(shù)學教案設計篇4

【教學目標】

1、了解三角形的中位線的概念

2、了解三角形的中位線的性質(zhì)

3、探索三角形的中位線的性質(zhì)的一些簡單的應用

【教學重點、難點】

重點:三角形的中位線定理。

難點:三角形的中位線定理的證明中添加輔助線的思想方法。

【教學過程】

(一)創(chuàng)設情景,引入新課

1、如圖,為了測量一個池塘的寬BC,在池塘一側(cè)的平地上選一點A,再分別找出線段AB、AC的中點D、E,若測出DE的長,就可以求出池塘的寬BC,你知道這是為什么嗎?

2、動手操作:剪一刀,將一張三角形紙片剪成一張三角形紙片和一張?zhí)菪渭埰?/p>

(1)如果要求剪得的兩張紙片能拼成平行的四邊形,剪痕的位置有什么要求?

(2)要把所剪得的兩個圖形拼成一個平行四邊形,可將其中的三角形做怎樣的圖形變換?

3、引導學生概括出中位線的概念。

問題:(1)三角形有幾條中位線?(2)三角形的中位線與中線有什么區(qū)別?

啟發(fā)學生得出:三角形的中位線的兩端點都是三角形邊的中點,而三角形中線只有一個端點是邊中點,另一端點上三角形的一個頂點。

4、猜想:DE與BC的關系?(位置關系與數(shù)量關系)

(二)、師生互動,探究新知

1、證明你的猜想

引導學生寫出已知,求證,并啟發(fā)分析。

(已知:⊿ABC中,D、E分別是AB、AC的中點,求證:DE∥BC,DE=1/2BC)

啟發(fā)1:證明直線平行的方法有哪些?(由角的相等或互補得出平行,由平行四邊形得出平行等)

啟發(fā)2:證明線段的倍分的方法有哪些?(截長或補短)

學生分小組討論,教師巡回指導,經(jīng)過分析后,師生共同完成推理過程,板書證明過程,強調(diào)有其他證法。

證明:如圖,以點E為旋轉(zhuǎn)中心,把⊿ADE繞點E,按順時針方向旋轉(zhuǎn)180゜,得到⊿CFE,則D,E,F(xiàn)同在一直線上,DE=EF,且⊿ADE≌⊿CFE。

∴∠ADE=∠F,AD=CF,

∴AB∥CF。

又∵BD=AD=CF,

∴四邊形BCFD是平行四邊形(一組對邊平行且相等的四邊形是平行四邊形),

∴DF∥BC(根據(jù)什么?),

∴DE 1/2BC

2、啟發(fā)學生歸納定理,并用文字語言表達:三角形中位線平行于第三邊且等于第三邊的一半。

(三)學以致用、落實新知

1、練一練:已知三角形邊長分別為6、8、10,順次連結(jié)各邊中點所得的.三角形周長是多少?

2、想一想:如果⊿ABC的三邊長分別為a、b、c,AB、BC、AC各邊中點分別為D、E、F,則⊿DEF的周長是多少?

3、例題:已知:如圖,在四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點。

求證:四邊形EFGH是平行四邊形。

啟發(fā)1:由E,F(xiàn)分別是AB,BC的中點,你會聯(lián)想到什么圖形?

啟發(fā)2:要使EF成為三角的中位線,應如何添加輔助線?應用三角形的中位線定理,能得到什么?你能得出EF∥GH嗎?為什么?

證明:如圖,連接AC。

∵EF是⊿ABC的中位線,

∴EF 1/2AC(三角形的中位線平行于第三邊,并且等于第三邊的一半)。

同理,HG 1/2AC。

∴EF HG。

∴四邊形EFGH是平行四邊形(一組對邊平行并且相等的四邊形是平行四邊形)

挑戰(zhàn):順次連結(jié)上題中,所得到的四邊形EFGH四邊中點得到一個四邊形,繼續(xù)作下去。。。你能得出什么結(jié)論?

(四)學生練習,鞏固新知

1、請回答引例中的問題(1)

2、如圖,在四邊形ABCD中,AB=CD,M,N,P分別是AD,BC, BD的中點。求證:∠PNM=∠PMN

(五)小結(jié)回顧,反思提高

今天你學到了什么?還有什么困惑?

八年級數(shù)學教案設計篇5

一、教學目標

1、認識中位數(shù)和眾數(shù),并會求出一組數(shù)據(jù)中的眾數(shù)和中位數(shù)。

2、理解中位數(shù)和眾數(shù)的意義和作用。它們也是數(shù)據(jù)代表,可以反映一定的數(shù)據(jù)信息,幫助人們在實際問題中分析并做出決策。

3、會利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。

二、重點、難點和難點的突破方法:

1、重點:認識中位數(shù)、眾數(shù)這兩種數(shù)據(jù)代表

2、難點:利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。

3、難點的突破方法:

首先應交待清楚中位數(shù)和眾數(shù)意義和作用:

中位數(shù)僅與數(shù)據(jù)的排列位置有關,某些數(shù)據(jù)的變動對中位數(shù)沒有影響,中位數(shù)可能出現(xiàn)在所給的數(shù)據(jù)中,當一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,可用中位數(shù)描述其趨勢。眾數(shù)是當一組數(shù)據(jù)中某一重復出現(xiàn)次數(shù)較多時,人們往往關心的一個量,眾數(shù)不受極端值的影響,這是它的一個優(yōu)勢,中位數(shù)的計算很少不受極端值的影響。

教學過程中注重雙基,一定要使學生能夠很好的掌握中位數(shù)和眾數(shù)的求法,求中位數(shù)的步驟:⑴將數(shù)據(jù)由小到大(或由大到小)排列,⑵數(shù)清數(shù)據(jù)個數(shù)是奇數(shù)還是偶數(shù),如果數(shù)據(jù)個數(shù)為奇數(shù)則取中間的數(shù),如果數(shù)據(jù)個數(shù)為偶數(shù),則取中間位置兩數(shù)的平均值作為中位數(shù)。求眾數(shù)的方法:找出頻數(shù)最多的那個數(shù)據(jù),若幾個數(shù)據(jù)頻數(shù)都是最多且相同,此時眾數(shù)就是這多個數(shù)據(jù)。

在利用中位數(shù)、眾數(shù)分析實際問題時,應根據(jù)具體情況,課堂上教師應多舉實例,使同學在分析不同實例中有所體會。

三、例習題的意圖分析

1、教材P143的例4的意圖

(1)、這個問題的研究對象是一個樣本,主要是反映了統(tǒng)計學中常用到一種解決問題的方法:對于數(shù)據(jù)較多的研究對象,我們可以考察總體中的一個樣本,然后由樣本的研究結(jié)論去估計總體的情況。

(2)、這個例題另一個意圖是交待了當數(shù)據(jù)個數(shù)為偶數(shù)時,中位數(shù)的求法和解題步驟。(因為在前面有介紹中位數(shù)求法,這里不再重述)

(3)、問題2顯然反映學習中位數(shù)的意義:它可以估計一個數(shù)據(jù)占總體的相對位置,說明中位數(shù)是統(tǒng)計學中的一個重要的數(shù)據(jù)代表。

(4)、這個例題再一次體現(xiàn)了統(tǒng)計學知識與實際生活是緊密聯(lián)系的,所以應鼓勵學生學好這部分知識。

2、教材P145例5的意圖

(1)、通過例5應使學生明白通常對待銷售問題我們要研究的是眾數(shù),它代表該型號的產(chǎn)品銷售,以便給商家合理的建議。

(2)、例5也交待了眾數(shù)的求法和解題步驟(由于求法在前面已介紹,這里不再重述)

(3)、例5也反映了眾數(shù)是數(shù)據(jù)代表的一種。

四、課堂引入

嚴格的講教材本節(jié)課沒有引入的問題,而是在復習和延伸中位數(shù)的定義過程中拉開序幕的,本人很同意這種處理方式,教師可以一句話引入新課:前面已經(jīng)和同學們研究過了平均數(shù)的這個數(shù)據(jù)代表。它在分析數(shù)據(jù)過程中擔當了重要的角色,今天我們來共同研究和認識數(shù)據(jù)代表中的新成員——中位數(shù)和眾數(shù),看看它們在分析數(shù)據(jù)過程中又起到怎樣的作用。

五、例習題的分析

教材P144例4,從所給的數(shù)據(jù)可以看到并沒有按照從小到大(或從大到小)的順序排列。因此,首先應將數(shù)據(jù)重新排列,通過觀察會發(fā)現(xiàn)共有12個數(shù)據(jù),偶數(shù)個可以取中間的兩個數(shù)據(jù)146、148,求其平均值,便可得這組數(shù)據(jù)的中位數(shù)。

教材P145例5,由表中第二行可以查到23.5號鞋的頻數(shù),因此這組數(shù)據(jù)的眾數(shù)可以得到,所提的建議應圍繞利于商家獲得較大利潤提出。

六、隨堂練習

1某公司銷售部有營銷人員15人,銷售部為了制定某種商品的銷售金額,統(tǒng)計了這15個人的銷售量如下(單位:件)

1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150

求這15個銷售員該月銷量的中位數(shù)和眾數(shù)。

假設銷售部負責人把每位營銷員的月銷售定額定為320件,你認為合理嗎?如果不合理,請你制定一個合理的銷售定額并說明理由。

2、某商店3、4月份出售某一品牌各種規(guī)格的空調(diào),銷售臺數(shù)如表所示:

1匹1.2匹1.5匹2匹

3月12臺20臺8臺4臺

4月16臺30臺14臺8臺

根據(jù)表格回答問題:

商店出售的各種規(guī)格空調(diào)中,眾數(shù)是多少?

假如你是經(jīng)理,現(xiàn)要進貨,6月份在有限的資金下進貨單位將如何決定?

答案:1. (1)210件、210件(2)不合理。因為15人中有13人的銷售額達不到320件(320雖是原始數(shù)據(jù)的平均數(shù),卻不能反映營銷人員的一般水平),銷售額定為210件合適,因為它既是中位數(shù)又是眾數(shù),是大部分人能達到的額定。

2. (1)1.2匹(2)通過觀察可知1.2匹的銷售,所以要多進1.2匹,由于資金有限就要少進2匹空調(diào)。

七、課后練習

1.數(shù)據(jù)8、9、9、8、10、8、99、8、10、7、9、9、8的中位數(shù)是,眾數(shù)是

2.一組數(shù)據(jù)23、27、20、18、X、12,它的中位數(shù)是21,則X的值是.

3.數(shù)據(jù)92、96、98、100、X的眾數(shù)是96,則其中位數(shù)和平均數(shù)分別是( )

A.97、96 B.96、96.4 C.96、97 D.98、97

4.如果在一組數(shù)據(jù)中,23、25、28、22出現(xiàn)的次數(shù)依次為2、5、3、4次,并且沒有其他的數(shù)據(jù),則這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( )

A.24、25 B.23、24 C.25、25 D.23、25

5.隨機抽取我市一年(按365天計)中的30天平均氣溫狀況如下表:

溫度(℃) -8 -1 7 15 21 24 30

天數(shù)3 5 5 7 6 2 2

請你根據(jù)上述數(shù)據(jù)回答問題:

(1).該組數(shù)據(jù)的中位數(shù)是什么?

(2).若當氣溫在18℃~25℃為市民“滿意溫度”,則我市一年中達到市民“滿意溫度”的大約有多少天?

答案:1. 9;2. 22; 3.B;4.C; 5.(1)15. (2)約97天

八年級數(shù)學教案【篇7】

一、戊戌變法的背景

(一)國內(nèi)背景:1.甲午中日戰(zhàn)爭后,中國民族資本主義有了初步發(fā)展,為中國民族資產(chǎn)階級參與政治活動提供了條件;2.甲午中日戰(zhàn)爭后,中國面臨瓜分危機。

(二)國際背景:1.日本明治維新的影響;2.法國啟蒙運動的影響。

二、戊戌變法的經(jīng)過

(一)序幕:“公車上書”

1.時間:1895年

2.直接原因:《馬關條約》的簽訂

3.領導人:康有為和梁啟超

4.上書內(nèi)容:反對同日本議和,請求變法圖強。

5.結(jié)果:由于封建頑固派的阻撓,沒有上書到光緒帝手中。

6.意義:揭開了維新變法運動的序幕。

(二)展開:宣傳維新變法思想

康有為和梁啟超創(chuàng)辦《萬國公報》,在北京組織強學會,后把《萬國公報》改名為《中外紀聞》,作為強學會的機關報發(fā)行。

(三)高 潮:百日維新

1.時間:1898年6月11日至9月21日

2.內(nèi)容:政治、經(jīng)濟、思想文化、軍事四個方面(見書)

年是舊歷戊戌年,因此稱這次革命為“戊戌變法”。

(四)結(jié)果:慈禧發(fā)動“戊戌政變”標志著戊戌變法的失敗。

(五)失敗原因:

1.客觀原因:以慈禧為代表的頑固派勢力遠遠大于維新派。

2.主觀原因:資產(chǎn)階級維新派自身的階級局限性,不敢發(fā)動人民群眾,只依靠一個并無實權(quán)的光緒帝。

(六)教訓:資產(chǎn)階級維新派不能擔負起救國救民的歷史重任,改良主義道路在中國行不通。

(七)歷史意義:

1.戊戌變法是一場資產(chǎn)階級的改良運動(或者說是一場自上而下的資產(chǎn)階級性質(zhì)的改革)。有利于中國民族資本主義的發(fā)展和西方科學技術的傳播,有利于資產(chǎn)階級知識分子參與政權(quán)。

2.戊戌變法又是一場思想解放運動,在社會上起了思想啟蒙的作用,為資產(chǎn)階級思想的傳播奠定基礎。

幼兒園教案《八年級數(shù)學教案》一文希望您能收藏!“幼兒教師教育網(wǎng)”是專門為給您提供幼兒園教案而創(chuàng)建的網(wǎng)站。同時,yjs21.com還為您精選準備了八年級數(shù)學教案專題,希望您能喜歡!

相關推薦

  • 2024八年級數(shù)學超全教案 作為一名教職工,就難以避免地要準備教案,編寫教案有利于我們弄通教材內(nèi)容,進而選擇科學、恰當?shù)慕虒W方法??靵韰⒖冀贪甘窃趺磳懙陌?!以下是小編精心整理的八年級數(shù)學教案(通用8篇),僅供參考,希望能夠幫助到大家。2024八年級數(shù)學超全教案 篇1一、指導思想通過數(shù)學課的教學,使學生切實學好從事現(xiàn)...
    2024-09-15 閱讀全文
  • 八年級數(shù)學教學總結(jié) 我們應該從何處著手寫范文呢?我們常常被要求撰寫各種不同類型的文件,近年來,范文的重要性受到了廣泛關注。 根據(jù)您的要求,編輯已經(jīng)為您找到了以下相關信息:“八年級數(shù)學教學總結(jié)”。...
    2024-02-24 閱讀全文
  • 八年級數(shù)學教案全套下冊 作為一位不辭辛勞的人民教師,就難以避免地要準備教案,教案是保證教學取得成功、提高教學質(zhì)量的基本條件。教案要怎么寫呢?以下是小編精心整理的八年級數(shù)學下冊教案,歡迎閱讀,希望大家能夠喜歡。八年級數(shù)學教案全套下冊 篇1一、教學目標1、了解二次根式的意義;2、掌握用簡單的一元一次不等式解決二...
    2024-09-28 閱讀全文
  • 五年級上冊數(shù)學教案八篇 我為了方便您整理了以下信息:“五年級上冊數(shù)學教案”,如果您覺得這篇文章值得一看請將其添加到您的收藏夾中。老師在開學前需要把教案課件準備好,每個人都要計劃自己的教案課件了。教案是培養(yǎng)學生創(chuàng)新思維的有效途徑。...
    2024-04-10 閱讀全文
  • 小學三年級數(shù)學教案范例八篇 本篇文章將重點探討“小學三年級數(shù)學教案”給我們帶來的啟示。在教學過程中,老師的首要任務是準備教案和課件,現(xiàn)在又到了編寫教案和課件的時候了。教學質(zhì)量不僅與老師的專業(yè)水平相關,也和學生的反應密切相關。閱讀本文后,您不僅會獲得新的知識,還會有全新的體驗!...
    2024-01-11 閱讀全文

作為一名教職工,就難以避免地要準備教案,編寫教案有利于我們弄通教材內(nèi)容,進而選擇科學、恰當?shù)慕虒W方法??靵韰⒖冀贪甘窃趺磳懙陌桑∫韵率切【幘恼淼陌四昙墧?shù)學教案(通用8篇),僅供參考,希望能夠幫助到大家。2024八年級數(shù)學超全教案 篇1一、指導思想通過數(shù)學課的教學,使學生切實學好從事現(xiàn)...

2024-09-15 閱讀全文

我們應該從何處著手寫范文呢?我們常常被要求撰寫各種不同類型的文件,近年來,范文的重要性受到了廣泛關注。 根據(jù)您的要求,編輯已經(jīng)為您找到了以下相關信息:“八年級數(shù)學教學總結(jié)”。...

2024-02-24 閱讀全文

作為一位不辭辛勞的人民教師,就難以避免地要準備教案,教案是保證教學取得成功、提高教學質(zhì)量的基本條件。教案要怎么寫呢?以下是小編精心整理的八年級數(shù)學下冊教案,歡迎閱讀,希望大家能夠喜歡。八年級數(shù)學教案全套下冊 篇1一、教學目標1、了解二次根式的意義;2、掌握用簡單的一元一次不等式解決二...

2024-09-28 閱讀全文

我為了方便您整理了以下信息:“五年級上冊數(shù)學教案”,如果您覺得這篇文章值得一看請將其添加到您的收藏夾中。老師在開學前需要把教案課件準備好,每個人都要計劃自己的教案課件了。教案是培養(yǎng)學生創(chuàng)新思維的有效途徑。...

2024-04-10 閱讀全文

本篇文章將重點探討“小學三年級數(shù)學教案”給我們帶來的啟示。在教學過程中,老師的首要任務是準備教案和課件,現(xiàn)在又到了編寫教案和課件的時候了。教學質(zhì)量不僅與老師的專業(yè)水平相關,也和學生的反應密切相關。閱讀本文后,您不僅會獲得新的知識,還會有全新的體驗!...

2024-01-11 閱讀全文