優(yōu)秀的人總是會提前做好準備,身為一位優(yōu)秀的幼兒園的老師我們都希望自己能教孩子們學到一些知識,為了加強學習效率,我們一般會事先準備好教案,有了教案,在上課時遇到各種教學問題都能夠快速解決。那么,你知道的幼兒園教案要怎么寫呢?以下由小編收集整理的《三角形的性質教案內容九篇》,希望對你有所幫助,動動手指請收藏一下!
教學目標:
知識技能
了解等腰三角形的性質,掌握等腰三角形的性質定理及推論,會用定理及推論解決簡單問題.
數(shù)學思考
培養(yǎng)學生探究思維、邏輯思維能力,探索引輔助線的規(guī)律.
教學重點與難點
重點:理解等腰三角形的性質定理、推論,并能用它們解決簡單的問題.
難點:引輔助線證明定理和推論1的應用.
教學過程與流程設計
引導性材料:
1.學生把等腰三角形的兩腰疊在一起,發(fā)現(xiàn)它的兩個底角重合,這說明等腰三角形具有什么性質?(等腰三角形的兩個底角相等)(演示疊合過程)
2.教師用等腰三角形紙片演示兩腰疊合,再把紙片展開.
提問:你能發(fā)現(xiàn)等腰三角形還有什么特性嗎?
(引入課題,明確目標)(顯示教學目標)
教學設計:
問題1:怎樣來證明“等腰三角形的兩個底角相等”呢?
已知:如圖,△abc中,ab=ac.
求證:∠b=∠c.
(方法1)證明:作頂角的平分線ad.
在△bad和△cad中。
ab=ac (已知)
∠1=∠2 (輔助線作法)
ad=ad (公共邊)
∴△bad≌△cad(sas)
∴∠b=∠c(全等三角形的對應角相等)
問題2:上述命題還有哪些證法?
方法2:作底邊bc上的高ad. (證明過程由學生口述)
方法3:作底邊bc上的中線ad.(證明過程由學生口述)
(演示):等腰三角形的性質定理 等腰三角形的兩個底角相等
(簡寫成“等邊對等角”)
觀察上述三種方法,思考如下問題:
(1)在等腰△abc中,如果ad是頂角的平分線,那么ad是否平分底邊?是否垂直于底邊?
(2)在等腰△abc中,如果ad是底邊上的高,那么ad是否平分頂角?是否平分底邊?
(3)在等腰△abc中,如果ad是底邊上的中線,那么ad是否平分頂角?是否垂直于底邊?
推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊.
(等腰三角形的頂角平分線、底邊上中線、底邊上的高互相重合.)
練習:填空,在△abc中,
(1)∵ab=ac,ad⊥bc,
∴∠ =∠ , = .
(2)∵ab=ac,ad是中線,
∴ ⊥ ,∠ =∠ .
(3)∵ab=ac,ad是角平分線,
∴ ⊥ , = .
問題2:等邊三角形是特殊的等腰三角形,除具有等腰三角形的性質外,還有特殊的性質嗎?
推論2:等邊三角形的各角都相等,并且每一個角都等于60°.(學生完成證明)
已知:如圖,△abc中,ab=ac=bc.
求證:∠a=∠b=∠c=60°
證明:∵ ab=ac,
∴∠b=∠c(等邊對等角),
∵ac=bc,
∴∠a=∠b(等邊對等角),
∴∠a=∠b=∠c,
《等腰三角形的性質》是“華東師大版七年級數(shù)學(下)”第九章第三節(jié)的內容。本課安排在《軸對稱的認識》后,明確了《等腰三角形的性質》與《軸對稱的認識》的聯(lián)系,起到知識的鏈接與開拓的作用。本課內容在初中數(shù)學教學中起著比較重要的作用,它是對三角形的性質的呈現(xiàn)。通過等腰三角形的性質反映在一個三角形中“等邊對等角”的邊角關系,并且是對軸對稱圖形性質的直觀反映(三線合一)。它所倡導的“觀察---發(fā)現(xiàn)---猜想---論證”的數(shù)學思想方法是今后研究數(shù)學的基本思想方法。因此,本節(jié)內容在教材中處于非常重要的地位,起著承前啟后的作用。
①知識與技能目標:
掌握等腰三角形的有關概念和相關性質。熟練運用等腰三角形的性質解決等腰三角形內角以及邊的計算問題。
②過程與方法目標:yJs21.coM
通過對性質的探究活動和例題的分析,培養(yǎng)學生多角度思考問題的習慣,提高學生分析問題和解決問題的能力。
③情感與態(tài)度目標:
通過對等腰三角形的觀察、試驗、歸納,體驗數(shù)學活動充滿著探索性和創(chuàng)造性,突出數(shù)學就在我們身邊。在操作活動中,培養(yǎng)學生之間的合作精神,在獨立思考的同時能夠認同他人。
重點:探索等腰三角形“等邊對等角”和“三線合一”的性質。
(這兩個性質對于平面幾何中的計算,以及今后的證明尤為重要,故確定為重點)
難點:等腰三角形中關于底和腰,底角和頂角的計算問題。
(由于等腰三角形底和腰,底角和頂角性質特點很容易混淆,而且它們在用法和討論上很有考究,只能練習實踐中獲取經(jīng)驗,故確定為難點。)
數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科,因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”,“教必有法而教無定法”,只有方法得當,才會有效。根據(jù)本課內容特點和初一學生思維活動的特點,我采用了教具直觀教學法,聯(lián)想發(fā)現(xiàn)教學法,設疑思考法,逐步滲透法和師生交際相結合的方法。
最有價值的知識是關于方法的知識,首先對于我們教師應該創(chuàng)造一種環(huán)境,引導學生從已知的、熟悉的知識入手,讓學生自己不知不覺中運用舊知識的鑰匙去打開新知識的大門,進入新知識的領域。本節(jié)課我將采用學生小組合作,實驗操作,觀察發(fā)現(xiàn),師生互動,學生互動的學習方式。學生通過小組合作學會“主動探究----主動總結---主動提高”。突出學生是學習的主體,他們在感受知識的過程中,提高他們“探究---發(fā)現(xiàn)---聯(lián)想---概括”的能力!
問題:軸對稱圖形的概念?這些圖片中有軸對稱圖形嗎?
②引入新課:再次通過精美的建筑物圖片,找出里面的等腰三角形。
邊:等腰三角形中,相等的兩條邊叫做腰,另一條邊叫做底邊.
角:等腰三角形中,兩腰的夾角叫做頂角,腰和底邊的夾角叫做底角.
①動動手:讓同學們做出一張等腰三角形的半透明的紙片,每個人的等腰三角形的大小和形狀可以不一樣,把紙片對折,讓兩腰重合在一起,你能發(fā)現(xiàn)什么現(xiàn)象?請你盡可能多的寫出結論。
②得出結論:可讓學生有充分的時間觀察、思考、交流、可能得到的結論:
性質2:等腰三角形的頂角的平分線,底邊上的中線,底邊上的高互相重合。
一、本章的兩套定理
第一套(比例的有關性質):
涉及概念:
①第四比例項
②比例中項
③比的前項、后項,比的內項、外項
④黃金分割等。
第二套:
注意:
①定理中對應二字的含義;
②平行相似(比例線段)平行。
二、相似三角形性質
1.對應線段
2.對應周長
3.對應面積。
三、相關作圖
①作第四比例項;
②作比例中項。
四、證(解)題規(guī)律、輔助線
1.等積變比例,比例找相似。
2.找相似找不到,找中間比。方法:將等式左右兩邊的比表示出來
3.添加輔助平行線是獲得成比例線段和相似三角形的重要途徑。
4.對比例問題,常用處理方法是將一份看著k;對于等比問題,常用處理辦法是設公比為k。
5.對于復雜的幾何圖形,采用將部分需要的圖形(或基本圖形)抽出來的辦法處理。
五、 應用舉例(略)
本課內容在初中數(shù)學教學中起著比較重要的作用,它是對三角形的性質的呈現(xiàn),通過等腰三角形的性質反映在一個三角形中等邊對等角,等角對等邊的邊角關系,并且對軸對稱圖形性質的直觀反映(三線合一)。并且在以后直角三角形和相似三角形中等腰三角形的性質也占有一席之地。
通過本節(jié)課的教學要求學生掌握等腰三角形的性質定理1、2、3,使學生會用等腰三角形的性質定理進行證明或計算,逐步滲透幾何證題的基本方法:分析法和綜合法,培養(yǎng)學生的聯(lián)想能力。而等腰三角形的性質定理是本課的重點,等腰三角形“三線合一”性質的運用是本課的難點
“授人以魚,不如授人以漁”,最有價值的知識是關于方法的知識,首先教師應創(chuàng)造一種環(huán)境,引導學生從已知的、熟悉的知識入手,讓學生自己在某一種環(huán)境下不知不覺中運用舊知識的鑰匙去打開新知識的大門,進入新知識的領域,從不同角度去分析、解決新問題,發(fā)掘不同層次學生的不同能力,從而達到發(fā)展學生思維能力和自學能力的目的,發(fā)掘學生的創(chuàng)新精神。
首先我用生活中的圖片引入等腰三角形的基本圖形,聯(lián)系生活,創(chuàng)設問題情境,把問題作為教學的出發(fā)點,激發(fā)學生的學習興趣。引出學生探究心理,迅速集中注意力,使其帶著濃厚的興趣開始積極探索思考。從而使學生的原認知結構對新知的學習具有某種“召喚力”,既明確了本節(jié)課的主要內容,激發(fā)了學生的學習興趣,又使學生了解到數(shù)學來源于生活又適用于生活,緊接著進入第二個環(huán)節(jié)。在本章的開始已經(jīng)學習了三角形的分類,并且認識了等腰三角形,為了更好地學好本節(jié)課,讓學生畫一個等腰三角形,指出其各部分的名稱,然后讓學生猜測等腰三角形除了兩腰相等以外它還具有哪些性質?猜想形成不成熟的結論∠B=∠C,那么,我們如何來證明呢?為學生提供可探索性的問題,合理的設計實驗過程,創(chuàng)造出良好的問題情境,不斷地引導學生觀察、實驗、思考、探索,使學生感到自己就像數(shù)學家那樣發(fā)現(xiàn)問題、分析問題、解決問題,去發(fā)現(xiàn)規(guī)律,證實結論。發(fā)揮學生學習的主觀能動性,培養(yǎng)學生的探索能力、科學的研究方法、實事求是的態(tài)度,通過引導,學生容易想到可添加輔助線構造全等三角形來加以證明。通過這樣一個過程既培養(yǎng)了學生動口、動手、動腦的能力,也使本節(jié)課的難點得以突破,最后師生共同完成證明過程,定理得證,從而由感性認識上升到了理性認識。
性質得出后再引導學生觀察。既然△ABC≌△ACD,那么∠BAD、∠CAD,BD與CD、AD與BC有什么關系呢?讓學生自己去發(fā)現(xiàn)、去聯(lián)想,能充分地發(fā)揮學生主觀能動性。通過學生自己動手實驗得到兩個定理的內容,可以使他們比較好的掌握知識、提高學習數(shù)學的興趣,達到了事半功倍之效。在整個教學過程中,本人利用多種教學方法,使學生在實驗中提出問題,解決問題的途徑,而不知不覺地進入學習氛圍,把學生從被動學習步入主動想學的習慣。
學完定理,我出示了一組練習,集中學生的注意力,同時為了突出重點,我設計了具有變式性的練習,通過口答、掄答形式來完成,既培養(yǎng)了學生的語言表達能力,又發(fā)揮了學生的主體地位,激發(fā)了學習興趣,活躍了課堂氣氛。
作業(yè)必做題面向全體學生,注重基本知識的鞏固,選做題面向學有余力的同學,培養(yǎng)他們產(chǎn)生學好數(shù)學的長久愿望。總之,在整個教學過程中,我遵循著“教師為主導,學生為主體,訓練為主線”的原則,在課上的每個環(huán)節(jié)中通過各種媒體,各種手段,始終注重興趣的激發(fā),培養(yǎng)學生學習的熱情,讓他們在輕松愉快中學習知識。
總之,在本節(jié)教學中,我始終堅持以學生為主體,教師為主導,致力啟用學生已掌握的知識,充分調動了學生的興趣和積極性,使他們最大限度地參與到課堂的活動中,在整個教學過程中我以啟發(fā)學生,挖掘學生潛力,讓他們展開聯(lián)想的思維,培養(yǎng)其能力為主旨而發(fā)展的。
一、教材分析
1、教材分析之地位和作用
《等腰三角形的性質》是“華東師大版七年級數(shù)學(下)”第九章第三節(jié)的內容。本課安排在《軸對稱的認識》后,明確了《等腰三角形的性質》與《軸對稱的認識》的聯(lián)系,起到知識的鏈接與開拓的作用。本課內容在初中數(shù)學教學中起著比較重要的作用,它是對三角形的性質的呈現(xiàn)。通過等腰三角形的性質反映在一個三角形中“等邊對等角”的邊角關系,并且是對軸對稱圖形性質的直觀反映(三線合一)。它所倡導的“觀察---發(fā)現(xiàn)---猜想---論證”的數(shù)學思想方法是今后研究數(shù)學的基本思想方法。因此,本節(jié)內容在教材中處于非常重要的地位,起著承前啟后的作用。
2、教材分析之教學目標
①知識與技能目標:
掌握等腰三角形的有關概念和相關性質。熟練運用等腰三角形的性質解決等腰三角形內角以及邊的計算問題。
②過程與方法目標:
通過對性質的探究活動和例題的分析,培養(yǎng)學生多角度思考問題的習慣,提高學生分析問題和解決問題的能力。
③情感與態(tài)度目標:
通過對等腰三角形的觀察、試驗、歸納,體驗數(shù)學活動充滿著探索性和創(chuàng)造性,突出數(shù)學就在我們身邊。在操作活動中,培養(yǎng)學生之間的合作精神,在獨立思考的同時能夠認同他人。
3、教材分析之教學重難點
重點:探索等腰三角形“等邊對等角”和“三線合一”的性質。
(這兩個性質對于平面幾何中的計算,以及今后的證明尤為重要,故確定為重點)
難點:等腰三角形中關于底和腰,底角和頂角的計算問題。
(由于等腰三角形底和腰,底角和頂角性質特點很容易混淆,而且它們在用法和討論上很有考究,只能練習實踐中獲取經(jīng)驗,故確定為難點。)
4、教材分析之教法
數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科,因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”,“教必有法而教無定法”,只有方法得當,才會有效。根據(jù)本課內容特點和初一學生思維活動的特點,我采用了教具直觀教學法,聯(lián)想發(fā)現(xiàn)教學法,設疑思考法,逐步滲透法和師生交際相結合的方法。
5、教材分析之學法
最有價值的知識是關于方法的知識,首先對于我們教師應該創(chuàng)造一種環(huán)境,引導學生從已知的、熟悉的知識入手,讓學生自己不知不覺中運用舊知識的鑰匙去打開新知識的大門,進入新知識的領域。本節(jié)課我將采用學生小組合作,實驗操作,觀察發(fā)現(xiàn),師生互動,學生互動的學習方式。學生通過小組合作學會“主動探究----主動總結---主動提高”。突出學生是學習的主體,他們在感受知識的過程中,提高他們“探究---發(fā)現(xiàn)---聯(lián)想---概括”的能力!
二、教學過程:
1、創(chuàng)設情景
①復習提問:向同學們出示幾張精美的建筑物圖片;
問題:軸對稱圖形的概念?這些圖片中有軸對稱圖形嗎?
②引入新課:再次通過精美的建筑物圖片,找出里面的等腰三角形。
問題:等腰三角形是軸對稱圖形嗎?
③相關概念:定義:兩條邊相等的三角形叫做等腰三角形。
邊:等腰三角形中,相等的兩條邊叫做腰,另一條邊叫做底邊.
角:等腰三角形中,兩腰的夾角叫做頂角,腰和底邊的夾角叫做底角.
2、探究問題
①動動手:讓同學們做出一張等腰三角形的半透明的紙片,每個人的等腰三角形的大小和形狀可以不一樣,把紙片對折,讓兩腰重合在一起,你能發(fā)現(xiàn)什么現(xiàn)象?請你盡可能多的寫出結論。
②得出結論:可讓學生有充分的時間觀察、思考、交流、可能得到的結論:
(1)等腰三角形是軸對稱圖形
(2)∠B=∠C
(3)BD=CD,AD為底邊上的中線
(4)∠ADB=∠ADC=90°,AD為底邊上的高線
(5)∠BAD=∠CAD,AD為頂角平分線
3、重要性質
性質1:等腰三角形的兩底角相等。(簡寫成“等邊對等角”)
性質2:等腰三角形的頂角的平分線,底邊上的中線,底邊上的高互相重合。
(簡稱“三線合一”)
如圖,在△ABC中,AB=AC,點D在BC上
(1)如果∠BAD=∠CAD,那么AD⊥BC,BD=CD
(2)如果BD=CD,那么∠BAD=∠CAD,AD⊥BC
(3)如果AD⊥BC,那么∠BAD=∠CAD,BD=CD
(為了方便記憶可以說成“知一求二!”)
三、例題部分:
例一:1、在等腰△ABC中,AB=3,AC=4,則△ABC的周長=________
2、在等腰△ABC中,AB=3,AC=7,則△ABC的周長=________
此例題的重點是運用等腰三角形的定義,以及等腰三角形腰和底邊的關系,仔細比較以上兩個例題,并強調在沒有明確腰和底邊之前,應該分兩種情況討論。而且在討論后還應該思考一個問題,就是這樣的三條邊能否夠成三角形。
例二:1、在等腰△ABC中,AB=AC,∠A=50°,則∠B=_____,∠C=______
2、在等腰△ABC中,∠A=100°,則∠B=______,∠C=______
此例題的重點是運用等腰三角形“等邊對等角”這一性質,突出頂角和底角的關系,強調等腰三角形中頂角和底角的取值范圍:0°<頂角<180°,0°<底角<90°。仔細比較以上兩個例題,得出結論一個經(jīng)驗:在等腰三角形中,已知一個角就可以求出另外兩個角。
例三:在等腰△ABC中,∠A=40°,則∠B=______
此題是一道陷阱題,可以先讓學生進行分析,和例二的2小題比較,估計會出一些狀況,大多數(shù)學生會按照兩種情況討論,得到兩個答案。然后跟學生畫出圖形進行分析,分兩種情況討論,但是答案是“三個”。強調需要自己畫圖解題時,一定要三思而后行!
例四:在△ABC中,AB=AC,點D是BC的中點,∠B=40°,求∠BAD的度數(shù)?
此題的目的在于等腰三角形“等邊對等角”和“三線合一”性質的綜合運用,以及怎么書寫解答題,強調“三線合一”的表達過程。
解:在△ABC中,
∵AB=AC,∠B=40°,∴∠B=∠C=40°
又∵∠A+∠B+∠C=180°,∴∠A=100°
在△ABC中,AB=AC,點D是BC的中點,
∴AD是底邊上的中線根據(jù)等腰三角形“三線合一”知:
AD是∠BAC的平分線,即∠BAD=∠CAD=50°
四、練習部分:
練功房Ⅰ(基礎知識)填空題
1、在△ABC中,若AB=AC,若頂角為80°,則底角的外角為_________.
2、在△ABC中,若AB=AC,∠B=∠A,則∠C=____________.
3、在△ABC中,若AB=AC,∠B的余角為25°,則∠A=____________.
4、已知:如圖,在△ABC中,D是AB邊上的一點,AD=DC,∠B=35°,
∠ACD=43°,則∠BCD=____________
開展小組競賽,比一比那個小組算的又快又準!
練功房Ⅱ(實踐運用)實踐題
如圖,是西安半坡博物館屋頂?shù)慕孛鎴D,已經(jīng)知道它的兩邊AB和AC是相等的建筑工人師傅對這個建筑物做出了兩個判斷:
①工人師傅在測量了∠B為37°以后,并沒有測量∠C,就說∠C的度數(shù)也是37°。
②工人師傅要加固屋頂,他們通過測量找到了橫梁BC的中點D,然后在AD兩點之間釘上一根木樁,他們認為木樁是垂直橫梁的。
請同學們想想,工人師傅的說法對嗎?請說明理由。
練功房Ⅲ(思維發(fā)散)選做題
已知:如圖,在△ABC中,AB=AC,E在AC上,D在BA的延長線上,AD=AE,連結DE。請問:DE⊥BC成立嗎?
五.小結部分
提問:今天我們學習了什么?你覺得在等腰三角形的學習中要注意哪些問題?
1、等腰三角形是軸對稱圖形,等腰三角形的定義,以及相關概念。
2、等腰三角形的兩底角相等。(簡寫成“等邊對等角”)
3、等腰三角形的頂角的平分線,底邊上的中線,底邊上的高互相重合。
(簡稱“三線合一”)
4、注意等腰三角形關于底和腰的計算題,特別是需要的討論的時候,最后還要進行
檢驗,看看這樣的三條邊是否可以構成三角形。
5、注意等腰三角形的頂角和底角的取值范圍:0°<頂角<180°,0°<底角<90°
6、重視需要自己畫圖解題時一定要“三思而后行”!
六.作業(yè)部分
1、教科書P86習題9.31,2,3,4題
2、請問:在等腰三角形中,等腰三角形兩腰上的中線(高線)是否相等?
為什么?
3、等腰三角形是特殊的三角形,思考一下,什么三角形又是特殊的等腰三角
形呢?帶著問題預習教科書P83—84。
七、板書設計
八、教學說明
本節(jié)課的設計力求體現(xiàn)使學生“學會學習,為終身學習做準備”的理念,努力實現(xiàn)學生的主體地位,使數(shù)學教學成為一種過程教學,讓學生在活動中獲得知識、形成技能和能力;在教學中注意教師角色的轉變,教師是組織者、參與者、合作者,教師的責任是為學生創(chuàng)造一種寬松、和諧、適合發(fā)展的學習環(huán)境,創(chuàng)設一種有利于思考、討論、探索的學習氛圍。在教法上采用啟發(fā)探索式教學模式,整堂課以問題為思維主線,引導學生通過觀察,自主探索,使學生觀察、主動思考,充分體驗探索的快樂和成功的樂趣,并充分利用計算機輔助教學,以加強感性認識并培養(yǎng)學生用運動聯(lián)系的觀點觀察現(xiàn)象、解決問題。整個教學環(huán)節(jié)層層推進、步步深入,融基礎性、靈活性、實踐性、開放性于一體,注重調動學生思維的積極性,把知識的形成過程轉化為學生親自觀察、實驗、發(fā)現(xiàn)、探索、運用的過程。使學生在獲得知識的同時提高興趣、增強信心、提高能力。本課就教學過程作以下幾點說明:
1、知識結構安排:
本課以“問題情境--------獲取新知--------應用與拓展”的模式展開,符合初一學生的認知規(guī)律。
2、教學反饋與評價:
本課從學生回答問題,練習情況等方面反饋學生對知識的理解、運用,教師根據(jù)反饋信息適時點撥;同時從新課標評價理念出發(fā),抓住學生語言、思想、動手能力方面的亮點給予表揚,不足的方面給予幫助、指導和恰如其分的鼓勵,形成發(fā)展性評價,提高學生學數(shù)學,用數(shù)學的信心。
3、對于本節(jié)的幾點思考
①本節(jié)的學習任務比較重要,有等腰三角形性質的推導、性質的應用,所
以本人針對學生的特點,在課例的掌握好的情況下,讓學生自己去發(fā)現(xiàn)、去聯(lián)想,
能充分地發(fā)揮學生主觀能動性。
②通過學生自己動手實驗得到等腰三角形性質的內容,可以使他們比較好的掌握知識、提高學習數(shù)學的興趣,達到了事半功倍之效。
③在整個教學過程中,本人利用多種教學方法,使學生在實驗中提出問題,解決問題的途徑,而不知不覺地進入學習氛圍,把學生從被動學習步入主動想學的習慣。
總之,在本節(jié)教學中,我始終堅持以學生為主體,教師為主導,師生互動,生生互動,致力啟用學生已掌握的知識,充分調動學生的興趣和積極性,使他們最大限度地參與到課堂的活動中,在整個教學過程中我以啟發(fā)學生,挖掘學生潛力,讓他們展開聯(lián)想的思維,培養(yǎng)其能力為主旨而發(fā)展。
教學目標
(一)教學知識點
探索等腰三角形的判定定理。
(二)能力訓練要求
通過探索等腰三角形的判定定理 及其例題的學習,提高學生的邏輯思維能力及分析問題解決問題的能力;
(三)情感與價值觀要求
通過對等腰三角形的判定定理的探索,讓學生體會探索學習的樂趣,并通過等腰三角形的判定定理的簡單應用,加深對定理的理解。從而培養(yǎng)學生利用已有知識解決實際問題的能力。
教學重點
等腰三角形的判定定理的探索和應用。
教學難點
等腰三角形的判定與性質的區(qū)別。
教具準備
作圖工具和多媒體課件。
教學方法
引以學生為主體的討論探索法;
教學過程
Ⅰ.提出問題,創(chuàng)設情境
1.等腰三角形性質是什么?
性質1 等腰三角形的兩底角相等。(等邊對等角)
性質2等腰三角形的頂角的平分線、底邊上的中線、底邊上的高互相重合。
(等腰三角形三線合一)
2、提問:性質1的逆命題是什么?
如果一個三角形有兩個角相等, 那么這個三角形是等腰三角形。 這個命題正確嗎?下面我們來探究: Ⅱ.導入新課
大膽猜想:
如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等。(簡稱“等角對等邊”). 由學生說出已知、求證,使學生進一步熟悉文字轉化為數(shù)學語言的方法。
[例1]已知:在△ABC中,∠B=∠C(如圖).
求證:AB=AC. 教師可引導學生分析:
BA12DC聯(lián)想證有關線段相等的知識知道,先需構成以AB、AC為對應邊的全等三角形。因為已知∠B=∠C,沒有對應相等邊,所以需添輔助線為兩個三角形的公共邊,因此輔助線應從A點引起。再讓學生回想等腰三角形中常添的輔助線,學生可找出作∠BAC的平分線AD或作BC邊上的高AD等證三角形全等的不同方法,從而推出AB=AC. (學生板演證明過程)
證明:作∠BAC的平分線AD. 在△BAD和△CAD中
??1??2,? ??B??C,
?AD?AD,? ∴△BAD≌△CAD(AAS).
∴AB=AC.
提問:你還有不同的證明方法嗎?(由學生口述證明過程)
等腰三角形的判定定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(簡寫成“等角對等邊”).
符號語言:在△ABC中 ∵ ∠B=∠C ∴ AB=AC (等角對等邊)
4、等腰三角形的性質與判定有區(qū)別嗎? 性質是:等邊 等角 判定是:等角 等邊
小結:證明三角形是等腰三角形的方法:①等腰三角形定義;②等腰三角形判定定理。
下面我們通過幾個例題來初步學習等腰三角形判定定理的簡單運用。
(演示課件)
[例2]求證:如果三角形一個外角的平分線平行于三角形的一邊,那么這個三角形是等腰三角形。
這個題是文字敘述的證明題,?我們首先得將文字語言轉化成相應的數(shù)學語言,再根據(jù)題意畫出相應的幾何圖形。
已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC(如圖).
求證:AB=AC.
同學們先思考,再分析。(由學生完成)
要證明AB=AC,可先證明∠B=∠C.
接下來,可以找∠B、∠C與∠
1、∠2的關系。
(演示課件,括號內部分由學生來填)
證明:∵AD∥BC,
∴∠1=∠B(兩直線平行,同位角相等),
∠2=∠C(兩直線平行,內錯角相等).
又∵∠1=∠2,
∴∠B=∠C,
∴AB=AC(等角對等邊).
看大屏幕,同學們試著完成這個題。
(課件演示)
已知:如圖,AD∥BC,BD平分∠ABC.
求證:AB=AD.
(投影儀演示學生證明過程)
證明:∵AD∥BC,
∴∠ADB=∠DBC(兩直線平行,內錯角相等).
又∵BD平分∠ABC,
∴∠ABD=∠DBC,
∴∠ABD=∠ADB,
∴AB=AD(等角對等邊).
下面來看另一個例題。
(演示課件)
? 例
2、已知等腰三角形的底邊等于a,底邊上的高等于b,你能用尺規(guī)作圖的方法作出
EA12DBCADBCM A
這個等腰三角形嗎? a
b
作法:(1)作線段BC,使BC=a;
(2)作BC的垂直平分線MN,交BC于D; (3)在MN上截取DA=h,得A點;
(4)連結AB、AC,則△ABC即為所求等腰三角形。
例
3、思考:在△ABC中,已知,BO平分∠ABC,CO平分∠ACB.過點O作直線EF//BC交AB于E,交AC于F.(1)請問圖中有多少個等腰三角形?說明理由。(2)線段EF和線段EB,FC之間有沒有關系?若有是什么關系?
Ⅲ.隨堂練習
(一)課本P79
1、
2、
3、4.
Ⅳ.課時小結
1、等腰三角形的判定方法有下列幾種: ①定義,②判定定理。
2、等腰三角形的判定定理與性質定理的區(qū)別是:條件和結論剛好相反。
3、運用等腰三角形的判定定理時,應注意 在同一個三角形中。 Ⅴ.作業(yè)布置:
學力水平:必做42頁 1------7題
選做 42頁 8-----10題
一、設計理念
《數(shù)學課程標準》指出:“數(shù)學是人們對客觀世界定性把握和定量刻畫,逐漸抽象概括,形成方法和理論,并進行廣泛應用的過程”,“有效的數(shù)學學習活動不能單純地依賴模仿與記憶,動手實踐、自主探究與合作交流是學生學習數(shù)學的重要方式”。因此,在本節(jié)課的教學設計中,將始終體現(xiàn)以下教育教學理念:
1、突出體現(xiàn)數(shù)學課程的基礎性、普及性和發(fā)展性,使數(shù)學教育面向全體學生。
2、學生是學習的“主人”,教學活動要遵循數(shù)學學習的心理規(guī)律,從已有的生活經(jīng)驗出發(fā),讓學生親身經(jīng)歷將已有的實際問題抽象成數(shù)學模型,并解釋和應用數(shù)學知識的過程。
3、教師是學習活動的組織者、引導者,教師應組織和引導學生在自主探索、合作交流的過程中理解和掌握數(shù)學知識與技能、數(shù)學思想和方法,獲得廣泛的數(shù)學活動經(jīng)驗。
4、聯(lián)系現(xiàn)實生活進行教學,讓學生初步具有“數(shù)學知識來源于生活,應用于生活”的思想,增強數(shù)學知識的應用意識。
二、教材分析
1、教學內容:
本節(jié)課是義務教育課程標準實驗教材數(shù)學八年級上冊第十四章第三節(jié)《等腰三角形》的第一課時的內容——等腰三角形的性質,等腰三角形是一種特殊的三角形,它除了具有一般三角形的性質以外,還具有一些特殊的性質。它是軸對稱圖形,具有對稱性,本節(jié)課就是要利用對稱的知識來研究等腰三角形的有關性質,并利用全等三角形的知識證明這些性質。
2、在教材中的地位與作用:
本節(jié)課是在學生掌握了一般三角形和軸對稱的知識,具有初步的推理證明能力的基礎上進行學習的,擔負著進一步訓練學生學會分析、學會證明的任務,在培養(yǎng)學生的思維能力和推理能力等方面有重要的作用;而“等邊對等角”和“三線合一”的性質是今后論證兩個角相等、兩條線段相等、兩條直線垂直的重要依據(jù),本節(jié)課是第三課時研究等邊三角形的基礎,是全章的重點之一。
3、教學目標:
知識技能:1、理解掌握等腰三角形的性質。
2、運用等腰三角形的性質進行證明和計算。
數(shù)學思考:1、觀察等腰三角形的對稱性,發(fā)展形象思維。
2、通過實踐、觀察、證明等腰三角形的性質,發(fā)展學生合情推理能力和演繹推理能力。
解決問題:1、通過觀察等腰三角形的對稱性,培養(yǎng)學生觀察、分析、歸納問題的能力。
2、通過運用等腰三角形的性質解決有關的問題,提高運用知識和技能解決問題的能力,發(fā)展應用意識。
情感態(tài)度:通過引導學生對圖形的觀察、發(fā)現(xiàn),激發(fā)學生的好奇心和求知欲,并在運用數(shù)學知識解答問題的活動中獲取成功的體驗,建立學習的自信心。
4、教學重點與難點:
重點:等腰三角形的性質的探索和應用。
難點:等腰三角形的性質的驗證。
5、教學準備:CAI課件,長方形的紙片,剪刀,常用畫圖工具。
三、學情分析
八年級學生的抽象思維趨于成熟,形象直觀思維能力較強,具有一定的獨立思考、實踐操作、合作交流、歸納概括等能力,能進行簡單的推理論證,掌握了一般三角形和軸對稱的知識。因此,在本節(jié)課的教學中,可讓學生從已有的生活經(jīng)驗出發(fā),參與知識的產(chǎn)生過程,在實踐操作、自主探索、思考討論、合作交流等數(shù)學活動中,理解和掌握數(shù)學知識和技能,形成數(shù)學思想和方法,讓每個學生在數(shù)學上得到不同的發(fā)展,人人都獲得必需的數(shù)學。
四、教法設想
——讓學生參與教學過程,注重培養(yǎng)學生的建構習慣,提高學生的數(shù)學素質。
《新課程標準》要求課堂教學要充分體現(xiàn)以學生發(fā)展為本的精神,因此,在本節(jié)課的教學設計中,我采用了“問題情境——建立模型——解釋、應用與拓展”的教學模式,讓學生經(jīng)歷知識的形成與應用的過程,從而更好地理解數(shù)學知識的意義,掌握必要的基礎知識和基本技能,發(fā)展應用數(shù)學知識的意識與能力,增強學好數(shù)學的愿望和信心。
在教學中,遵循因材施教的原則,堅持以學生為主體,靈活運用教具直觀教學、聯(lián)想發(fā)現(xiàn)教學、設疑思考和逐步滲透等教學方法,充分發(fā)揮學生的主觀能動性,注重學生探究能力的培養(yǎng),讓學生去親身體驗知識的產(chǎn)生過程,拓展學生的創(chuàng)造性思維,加強對學生的啟發(fā)、引導和鼓勵,培養(yǎng)學生大膽猜想、小心求證的科學研究思想,為學生創(chuàng)設情境,激發(fā)學生的求知欲和學習興趣,促使他們不斷克服學習中的被動心理,讓學生在輕松愉快的學習中掌握知識、發(fā)展智力、受到教育。
采用多媒體輔助教學,呈現(xiàn)更直觀的形象,激發(fā)學生的積極性、主動性,增大課堂容量,提高教學效率。
五、學法設計
《數(shù)學課程標準》指出:數(shù)學的抽象結論,應以觀察、實驗為前提,幾何教學應該把實驗方法與邏輯分析結合起來。教學中,讓學生在教師的引導下,一邊進行折疊重合的模型演示,一邊進行閱讀討論,通過看、想、議、練等活動,自己“發(fā)現(xiàn)”等腰三角形的性質;從而避免了傳統(tǒng)教學中的灌輸式、注入式。這樣做有利于活躍學生的思維,幫助他們探本求源,體現(xiàn)了“學習任何東西的最好途徑是自己去發(fā)現(xiàn)”和“學問之道,問而得,不如求而得之深固也”的思想。把重點放在學生如何學這一方面,通過直觀演示得到感性認識,在實踐、觀察、討論、交流等活動中,讓學生經(jīng)歷由驗證歸納到推理論證的認知過程,掌握知識和技能,形成思想和方法,培養(yǎng)學生的造性思維。
六、教學過程設計
(一)回顧與思考(2′)
1、課件出示人字型屋頂?shù)膱D象,提問:(1)、屋頂設計成了哪種幾何圖形?(2)、它有什么特征?它是軸對稱圖形嗎?對稱軸是哪一條?(由日常生活中的等腰三角形引出課題,目的在于讓學生體會數(shù)學來源于生活,培養(yǎng)學生從實際問題中抽象出數(shù)學問題的能力,同時,為學習新知創(chuàng)造豐富的舊知環(huán)境,有利于幫助學生找準新舊知識的連接點,特別是問題(2),其實就是等腰三角形三線合一性質的伏筆。)
2、學生思考回答后,教師再提問引入課題:等腰三角形還有其他的特殊性質嗎?這節(jié)課我們就來研究等腰三角形的性質。(現(xiàn)代教學論認為:在正式進行探索和發(fā)現(xiàn)前,要讓學生對探索的目標、意義有十分明確的認識,做好探索前的物質準備和精神準備。)
(二)觀察與表達(4′)
剪一剪:教師引導學生將課前準備的長方形紙片按教材要求對折后剪下,再把它展開,看得到了一個什么圖形?(通過讓學生動手剪紙,獲得圖形的直觀感受,并為下面的折紙操作做好鋪墊,為學生提供參與數(shù)學活動的時間和空間,調動學生的主觀能動性,激發(fā)其好奇心和求知欲。)
想一想:1、剪紙過程中得到的⊿ABC有什么特點?
學生思考并交流意見,教師歸納并板書:在⊿ABC中,AB=AC,像這樣有兩邊相等的三角形叫等腰三角形。
再讓學生找一找生活中的等腰三角形。
2、除了剪紙的方法外,你還可以其他的方法作(畫)出等腰三角形嗎?
學生思考、討論、交流,教師在學生充分發(fā)表自己想法的基礎上給出等腰三角形的畫法,并畫出圖形,然后結合前面剪、畫的圖形介紹“腰”、“底邊”、“頂角”、“底角”等概念。(結合自已剪出的等腰三角形和畫出的圖形學習相關概念,加深印象。)
(三)了解與探究(14′)
1、提問:剛才剪出的等腰三角形ABC是軸對稱圖形嗎?它的對稱軸是什么?
學生思考、回顧剪紙過程,動手把等腰三角形ABC沿折痕對折,容易回答出⊿ABC是軸對稱圖形,折痕AD所在的直線是它的對稱軸。(讓學生認識到動手操作也是一種驗證方式。)
2、把剪出的等腰三角形ABC沿折痕對折,找出其中重合的線段和角,并填在書上的表格中,你發(fā)現(xiàn)了什么現(xiàn)象?能猜一猜等腰三角形ABC有哪些性質嗎?
①∠B=∠C →兩個底角相等
②BD=CD →AD為底邊BC上的中線
③∠BAD=∠CAD →AD為頂角∠BAC的平分線
④∠ADB=∠ADC=90°→AD為底邊BC上的高
教師在學生猜想的基礎上,引導學生觀察、完善、歸納出性質1和性質2:
性質1等腰三角形的兩個底角相等(簡寫成“等邊對等角”);
性質2等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合(簡寫成“三線合一”)
(通過教師的引導,學生利用等腰三角形的對稱性,討論、歸納出等腰三角形的兩條性質,在這個過程中訓練學生文字語言與符號語言的互換,培養(yǎng)學生自主探究的學習品質和觀察分析、歸納概括的能力,發(fā)展形象思維。)
3、用全等三角形的知識驗證等腰三角形的性質
(1)性質1(等腰三角形的兩個底角相等)的條件和結論分別是什么?用數(shù)學符號如何表達條件和結論?如何證明?
教師引導學生根據(jù)猜想的結論畫出相應的圖形,寫出已知和求證,師生共同分析證明思路,強調以下兩點:
①利用三角形的全等來證明兩角相等,為證∠B=∠C,需證明以∠B、∠C為元素的兩個三角形全等,需要添加輔助線構造符合證明要求的兩個三角形。
②添加輔助線的方法有很多種,常見的有作頂角∠BAC的平分線,或作底邊BC上的中線,或作底邊BC上的高等,讓學生選擇一種輔助線并完成證明過程。
(2)回顧性質1的證明方法,你能用這種方法證明性質2(等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合)嗎?
讓學生模仿證明性質2,并鼓勵學生用多種方法證明。
(等腰三角形的性質的探索與驗證是本節(jié)課的重點和難點,本環(huán)節(jié)中,充分調動學生的主觀能動性,讓學生大膽猜想、小心求證,經(jīng)歷性質證明的過程,增強理性認識,體驗性質的正確性和輔助線在幾何論證中的作用,在學生的自主探索中,完成了重點知識的教學,突破了教學難點,培養(yǎng)了學生的合情推理能力和演繹推理的能力。)
(四)應用與提高(10′)
1、課件出示:某房屋的頂角∠BAC=120°,過屋頂A的立柱AD⊥BC,屋椽AB=AC,求頂架上的∠B、∠C、∠CAD的度數(shù)。
(本節(jié)課從居民建筑人字梁結構中抽象出幾何問題,通過實踐探究活動得出等腰三角形的性質這一結論,在此,再將得到的結論應用到實踐中,解決人字梁結構中的實際問題,這樣既有前后呼應,又體現(xiàn)了“數(shù)學來源于生活,應用于生活”的思想,有利于增強學生的數(shù)學應用意識。)
⑴∵AB=AC,AD⊥BC
∴∠_=∠_,_=_;
⑵∵AB=AC,BD=DC
∴∠_=∠_,_⊥_;
⑶∵AB=AC,AD平分∠BAC
∴_⊥_,_=_
(讓學生再次理解和運用等腰三角形的“三線合一”性質,以填空的形式及時鞏固所學知識,了解學生的學習效果,增強學生應用知識的能力。)
3、課件出示:如圖(二),在⊿ABC中,AB=AC,點D在AC上,
且BD=AD,
⑴圖中共有幾個等腰三角形?分別寫出它們的頂角與底角;
⑵你能求出各角的度數(shù)嗎?
師生共同分析:⑴已知中沒有給出角度,需利用三角形內角和為180°的條件來求具體度數(shù),但由于未知數(shù)過多,需根據(jù)已知各邊的關系尋找到⊿ABC的各角關系,由圖中的三個等腰三角形的底角及外角性質,可設∠A=X°,列方程解決。⑵強調此題圖形特殊,只有頂角為36°的等腰三角形才能滿足。
(改編課本例題,使問題更富層次性與探究性,使學生認識到從復雜圖形中分解出等腰三角形是利用性質解決問題的關鍵,培養(yǎng)學生數(shù)形結合的能力和方程的思想。)
等腰三角形的性質的應用,是這節(jié)課的又一重點,本環(huán)節(jié)就是通過運用這一性質解決有關問題,讓學生在解答活動中提高運用知識和技能的能力,在掌握重點知識的同時,獲得成功的體驗,建立學習的自信心。
(五)拓展與延伸(5′)
⑴等腰三角形底邊中點到兩腰的距離相等嗎?
教師指導學生動手畫圖,折紙,思考,討論得出結論,并用適當?shù)姆椒炞C這一結論。
⑵利用類似的方法,還可以得到等腰三角形中哪些線段相等?
教師引導學生尋找等腰三角形中其他相等的線段,如:兩腰上的高,兩腰上的中線,兩底角的平分線等。
(通過學生動手實踐,增強學生動手能力,引導學生合作探究,更深入地認識等腰三角形和性質,啟迪學生的發(fā)散思維。)
(六)心得與體會(4′)
這節(jié)課我們主要研究了什么內容?你有哪些收獲?
請用“通過今天這堂課的研究,我明白了(),我的收獲與感受有(),我還有疑惑之處是()”的模式來總結、評價這堂課的學習。
(讓學生按上述的模式進行小結,通過對本節(jié)課的回顧,增強學生對等腰三角形的理解和對軸對稱圖形的理解,培養(yǎng)學生“學習、總結、學習、反思”的良好習慣,同時通過自我的評價來獲得成功的快樂,提高學生學習的自信心。)
(七)練習與作業(yè)(1′)
1、略(詳見課件);
2、教科書習題14.3第1、4、6題;
3、教科書第143頁練習題1、2、3。
(讓學生體會等腰三角形的性質在現(xiàn)實生活中的應用價值,學會用數(shù)學知識解決實際問題,進一步鞏固所學知識,及時反饋,查漏補缺,分層次布置作業(yè),滿足不同學生的發(fā)展需求,體現(xiàn)層次性和開放性。)
設計思想:
現(xiàn)代數(shù)學教學觀念要求學生從“學會”向“會學”轉變。所以本節(jié)課在教學方法的設計上,把重點放在了逐步展示知識的形成過程上,先讓學生通過剪紙來認識等腰三角形;再通過折紙、猜測、驗證等腰三角形的性質;然后運用全等三角形的知識加以論證,在教學設計中遵循由個別形象到一般抽象、由感性到理性的認知規(guī)律,使學生的思維由形象直觀過渡到抽象的邏輯演繹,層層展開,步步深入,真正實現(xiàn)學生為主體的教學宗旨。在教學設計中還突出了三個注重:1、注重讓學生參與知識的形成過程,體現(xiàn)應用數(shù)學知識解決問題的樂趣;2、注重師生間、學生間的互動協(xié)作,共同提高;3、注重知能統(tǒng)一,讓學生在獲取知識的同時,掌握方法,靈活運用。
一、教材分析
本節(jié)課是在學習了軸對稱圖形以及全等三角形的判定的基礎上進行的,主要學習等腰三角形的“等邊對等角”和“等腰三角形的三線合一”兩個性質。本節(jié)內容是對前面知識的深化和應用,它的性質定理不僅是證明角相等、線段相等及兩直線互相垂直的依據(jù),而且也是后繼學習線段垂直平分線、等腰梯形的預備知識。因此,本節(jié)內容在教材中處于非常重要的地位,起著承前啟后的作用。
二、教學目的
(一)知識目標:知道等腰三角形的定義及相關概念,理解等腰三角形的性質,會利用等腰三角形的性質進行簡單的推理、判斷和計算。
(二)能力目標:通過實踐,觀察,證明等腰三角形性質,發(fā)展學生合情推理和演繹推理能力,通過運用等腰三角形的性質解決有關問題,提高分析問題、解決問題能力。
(三)情感目標:在實際操作動手中激發(fā)學生的學習興趣,體驗幾何發(fā)現(xiàn)的樂趣,從而增強學生學數(shù)學、用數(shù)學的意識。
三、教學重、難點
(一)重點:等腰三角形的性質的探究及應用
(二)難點:等腰三角形“三線合一”性質的運用
四、教學方法
(一)教法:本節(jié)課采用了教具直觀教學法,聯(lián)想發(fā)現(xiàn)教學法,設疑思考法,逐步滲透法和師生交際相結合的方法。
(二)學法:本節(jié)課主要引導學生從已知的、熟悉的知識入手,讓學生自己在某一種環(huán)境下不知不覺中運用舊知識的鑰匙去打開新知識的大門,進入新知識的領域,從不同角度去分析、解決新問題,發(fā)掘不同層次學生的不同能力,從而達到發(fā)展學生思維能力和自學能力的目的,發(fā)掘學生的創(chuàng)新精神。
五、教學過程
(一)創(chuàng)設情景,引入新知
我們學過三角形,你都知道哪些特殊的三角形?今天我們來學習其中的一種特殊的三角形——等腰三角形。
等腰三角形的有關概念,軸對稱圖形的有關概念。
提問:等腰三角形是不是軸對稱圖形?什么是它的對稱軸?
(二)實驗探索,大膽猜想
教師演示(模型)等腰三角形是軸對稱圖形的實驗,并讓學生做同樣的實驗,引導學生觀察重合部分,發(fā)現(xiàn)等腰三角形的一些性質。
(三)證明猜想,形成定理
讓學生由實驗或演示指出各自的發(fā)現(xiàn),并加以引導,用規(guī)范的數(shù)學語言進行逐條歸納,最后得出等腰三角形的性質定理1、2。
1、性質定理1:
等腰三角形的兩個底角相等
在△ABC中,∵AB=AC()∴∠B=∠C()
2、性質定理2:
等腰三角形的頂角平分線、底邊上的中線和高線互相重合
(1)∵AB=AC∠1=∠2()∴BD=DCAD⊥BC()
(2)∵AB=ACBD=DC() ∴∠1=∠2AD⊥BC()
(3)∵AB=ACAD⊥BC于D()∴BD=DC∠1=∠2()
(四)應用舉例,強化訓練
指導學生表述證明過程。
思考題:等腰三角形兩腰上的中線(高線)是否相等?為什么?
(五)歸納小結,布置作業(yè)
1、歸納:
(1)等腰三角形的性質定理。
(2)等邊三角形的性質
(3)利用等腰三角形的性質定理可證明:兩角相等,兩線段相等,兩直線互相垂直。
(4)聯(lián)想方法要經(jīng)常運用,對解題大有裨益。
2、作業(yè)布置:
(1)必做題:
書本課后作業(yè)
(2)選做題:搜集日常生活中應用等腰三角形的實例,并思考這些實例運用了等腰三角形的哪些性質?
《等腰三角形的性質》教學設計 教學目標:
(一).知識目標:
1、掌握等腰三角形的兩底角相等,底邊上的高、中線及頂角平分線三線合一的性質,并能運用它們進行有關的論證和計算。
2、理解等腰三角形和等邊三角形性質定理之間的聯(lián)系。
(二)能力目標:
1、定理的引入培養(yǎng)學生對命題的抽象概括能力,加強發(fā)散思維的訓練。
2、定理的證明培養(yǎng)學生“轉化”的數(shù)學思想及應用意識,初步掌握作輔助線的規(guī)律及 “分類討論”的思想。
3、定理的應用,培養(yǎng)學生進行獨立思考,提高獨立解決問題的能力。
(三)情感目標:
在教學過程中,引導學生進行規(guī)律的再發(fā)現(xiàn),激發(fā)學生的審美情感,與現(xiàn)實生活有關的實際問題使學生認識到數(shù)學對于外部世界的完善與和諧,使他們有效地獲取真知,發(fā)展理性。教學重點:等腰三角形的性質定理及其證明。
教學難點:問題的證明及等腰三角形中常用添輔助線的方法。教學方法:引導發(fā)現(xiàn)法、探究法、講解法、練習法 教學過程: 一.復習引入: 1.三角形按邊怎樣分類? 2.什么叫等腰三角形? 3.一般三角形有那些性質? 4.同學們都很熟悉人字梁屋架(出示圖形),它的外觀構形就是等腰三角形。等腰三角形除了具有一般三角形的性質外,還有那些特殊的性質?今天我們一起研究------等腰三角形的性質(揭示課題).二.新課講解: 1.動手實驗,發(fā)現(xiàn)結論
[問題1] 等腰三角形的兩腰AB=AC,能否通過對折重合呢?(學生動手折疊課前準備好的等腰三角形)
通過實驗,大家得出什么結論? [結論]等腰三角形的兩個底角相等.[辨疑]從實際圖形中發(fā)現(xiàn)結論,并驗證結論,這也是探究幾何問題的方法之一。但必須注意,由觀察發(fā)現(xiàn)的命題不一定是真命題,需要證明,怎樣證明? 2.證明結論,得出性質
[問題2] 關于幾何命題的證明步驟是怎樣的?(學生回答)啟發(fā)學生找出題設和結論,畫出圖形,并寫出已知、求證。[問題3]
證兩角相等的常用方法是什么?(學生回答,要證兩角所在的兩個三角形全等)引導學生全面觀察,聯(lián)想,突破引輔助線的難關,并向學生滲透轉化的數(shù)學思想。
[問題4] 證明性質定理時,輔助線可不可以作成BC邊上的高或中線?證明兩三角形全等的方法有什么不同? 引導學生分析后寫出證明過程,同時總結等腰三角形常用輔助線的添加方法及其用。上述結論就是等腰三角形的性質定理:
等腰三角形的兩個底角相等.簡述成:等邊對等角。
[說明]所謂等邊對等角,是指在同一個三角形中有兩條邊相等,則這兩邊所對的兩個角相等。這是在同一個三角形中證明兩個角相等的常用方法。3.鞏固練習,加深理解 練習一:
1.△ABC中,AB=AC.(1)
若∠B=50°, 則∠C=______,∠A=________.(2)
若∠A=100°, 則∠B=______,∠C=________.2.(1)等腰三角形的一個內角為50°,則另兩個角為_____________________.(2)等腰三角形的一個內角為100°,則另兩個角為_____________________.(3)等腰三角形的一個內角為90°,則另兩個角為_____________________.[歸納]已知等腰三角形的一個內角的度數(shù),求其它兩角時,(a)若已知角為鈍角或直角,則它一定是頂角;(b)若已知角為銳角,它可能是頂角,也可能是底角.4.運用性質,得出推論
[問題5] 上面定理的證明得出兩個三角形全等后,還可以證明那些對應元素相等呢?(學生探討回答,并歸納得出推論1)推論1:等腰三角形頂角的平分線平分底邊,并且垂直于底邊.推論1用幾何語言表示: 在△ABC中,(1)∵AB=AC,AD⊥BC,∴∠______=∠_____,______=______;
(2)∵AB=AC,AD是中線,∴∠_____=∠______,_____⊥____;
(3)∵AB=AC,AD是角平分線,∴_____⊥_____,______=______。推論1體現(xiàn)了AD的三重“身份”,即“三線合一”性質:
等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。[問題6] 一般三角形是否具有這一性質呢?
[問題7] 等邊三角形的各角之間有什么關系?各角為多少度?(學生回答,并歸納得出推論2)
推論2:等邊三角形的三個角都相等,并且每個角都等于60°。5.深入實際,舉例應用
例題:已知:如圖,房屋的頂角∠BAC=100°,過屋頂A的立柱AD⊥BC,屋檐AB=AC,求頂架上∠B、∠C、∠BAD、∠CAD的度數(shù).首先用多媒體給出學生熟悉的人字梁屋架,然后分別介紹頂架上房屋的屋椽(兩條椽相等)、橫梁、立柱(垂直于橫梁),而后把頂架結構抽象成數(shù)學模型,尋找解題思路。6.鞏固練習,加深理解
練習二
如下圖的三角形測平架中AB=AC,在BC的中點D掛一個重錘自然下垂,調整架身,使點A恰好在錘線上.(1)求證: AD⊥BC(2)這時BC處于水平位置嗎?
三.課堂小結: 1.等腰三角形的性質定理.(會根據(jù)等腰三角形的一個角求另兩個角(分情況討論))2.推論1(“三線合一”)(會用之證明兩角相等、兩線段相等或兩直線互相垂直)和推論2。3.等腰三角形中經(jīng)常用到的輔助線(頂角的平分線、底邊上的中線或高,根據(jù)具體情況決定),分類討論的思想,把實際問題抽象成數(shù)學模型的能力。四.布置作業(yè):
幼兒教師教育網(wǎng)的幼兒園教案頻道為您編輯的《三角形的性質教案內容九篇》內容,希望能幫到您!同時我們的三角形性質教案專題還有需要您想要的內容,歡迎您訪問!
相關推薦
在教學過程中,老師教學的首要任務是備好教案課件,又到了寫教案課件的時候了。?教案課件能夠準確地反映出教學過程中的創(chuàng)造和智慧,對于寫教案課件有哪些疑問呢?這篇文章是幼兒教師教育網(wǎng)從網(wǎng)絡上認真篩選的優(yōu)質“三角形內角和教案”文章,我們會不斷更新和改進還請您多多關注我們的網(wǎng)站!...
“三角形內角和教案”教案課件是老師教學工作的起始環(huán)節(jié),也是上好課的先決條件,每位老師應該設計好自己的教案課件。寫好教案課件,可以避免重要內容被遺忘,大家是不是擔心寫不好教案課件?為滿足你的需求,欄目小編特別編輯了“三角形內角和教案”,自信能夠幫助你找到適合自己的內容!...
為了實現(xiàn)教育教學的目的和任務,編寫教案是必不可少的。在上課之前,每位老師都必須認真制定好自己的教案,以指導教學步驟。為了滿足您的需求,本文精心編輯了名為“等腰三角形的性質說課稿”的教案,希望能對您有所幫助!...
根據(jù)教學要求,老師在上課前需要準備好教案課件。而教案課件中的內容則是老師自己去完善的。想要提高學生的自主學習能力,一個創(chuàng)新的教學課件制作就顯得十分重要。如果你正因為不會寫教案課件而困擾,那么幼兒教師教育網(wǎng)強烈建議你閱讀這篇有深度的“三角形的特性的教案”,它可以為你提供一些建議,但請注意這只是參考用途...
俗話說,手中無網(wǎng)看魚跳。。優(yōu)質課堂,就是幼兒園的老師在講學生在答,講的知識都能被學生吸收,教案的作用就是為了緩解學生的壓力,提升效率,提前準備好教案可以有效的提高課堂的教學效率。那么,你知道的幼兒園教案要怎么寫呢?或許"平行線的性質教案內容十二篇"是你正在尋找的內容,歡迎你閱讀和收藏,并分享給身邊的...
最新更新