幼兒教師教育網(wǎng),為您提供優(yōu)質(zhì)的幼兒相關(guān)資訊

高中三角函數(shù)教材分析與反思(摘錄十篇)

發(fā)布時(shí)間:2024-10-21

作為一名為他人授業(yè)解惑的教育工作者,常常需要準(zhǔn)備教學(xué)設(shè)計(jì),教學(xué)設(shè)計(jì)是連接基礎(chǔ)理論與實(shí)踐的橋梁,對(duì)于教學(xué)理論與實(shí)踐的緊密結(jié)合具有溝通作用。那么大家知道規(guī)范的教學(xué)設(shè)計(jì)是怎么寫的嗎?下面是小編為大家收集的高中數(shù)學(xué)教學(xué)設(shè)計(jì),僅供參考,希望能夠幫助到大家。

高中三角函數(shù)教材分析與反思 篇1

一、教學(xué)內(nèi)容與學(xué)情分析

1、本課內(nèi)容在教材、新課標(biāo)中的地位和作用

《銳角三角函數(shù)的簡(jiǎn)單應(yīng)用》是初中數(shù)學(xué)九年級(jí)上冊(cè)第一章第六節(jié)的內(nèi)容。本節(jié)課是《銳角三角函數(shù)的簡(jiǎn)單應(yīng)用》的第三課時(shí),是繼前面學(xué)習(xí)了三角函數(shù)應(yīng)用中的有關(guān)旋轉(zhuǎn)問題和測(cè)量問題后的又一種類型的應(yīng)用:即有關(guān)工程中的坡度問題。三種類型的問題只是問題的背景不同,其實(shí)解決問題所用的工具都相同,即直角三角形的邊角關(guān)系。因此本節(jié)課沿用前兩節(jié)課的教學(xué)模式。直角三角形是最簡(jiǎn)單、最基本的幾何圖形,在生活中隨處可見,是研究其他圖形的基礎(chǔ),在解決實(shí)際問題中也有著廣泛的應(yīng)用.《銳角三角函數(shù)的簡(jiǎn)單應(yīng)用》是解直角三角形的延續(xù),滲透著數(shù)形結(jié)合思想、方程思想、轉(zhuǎn)化思想。因此本課無(wú)論是在本章還是在整個(gè)初中數(shù)學(xué)教材中都具有重要的地位。

關(guān)于銳角三角函數(shù)的簡(jiǎn)單應(yīng)用,《數(shù)學(xué)新課程標(biāo)準(zhǔn)》中要求:運(yùn)用三角函數(shù)解決與直角三角形有關(guān)的簡(jiǎn)單實(shí)際問題,考綱中的能級(jí)要求為C(掌握)。

2、學(xué)生已有的知識(shí)基礎(chǔ)和學(xué)習(xí)新知的障礙

通過前幾節(jié)課的學(xué)習(xí),學(xué)生已經(jīng)經(jīng)歷過了建立三角函數(shù)模型解決問題的過程,掌握了一定的解題技巧和方法,具備了一定的分析問題、解決問題的能力。這為本節(jié)課的學(xué)習(xí)奠定了良好的基礎(chǔ)。

由于坡度問題涉及梯形的有關(guān)性質(zhì)和解題技巧,而學(xué)生對(duì)此遺忘嚴(yán)重,再次面對(duì)梯形的問題情境,會(huì)產(chǎn)生思維上的障礙。另外坡度問題的計(jì)算較復(fù)雜,而學(xué)生的計(jì)算能力較弱,計(jì)算器使用不熟練,特殊角的三角函數(shù)值還沒記牢,這些對(duì)整個(gè)問題的解決都會(huì)起到延緩的作用。

二、目標(biāo)的設(shè)定

基于以上分析,將本節(jié)課教學(xué)目標(biāo)設(shè)定為:

1、應(yīng)用三角函數(shù)解決有關(guān)坡度的問題,進(jìn)一步理解三角函數(shù)的意義。

2、經(jīng)歷探索實(shí)際問題的求解過程,進(jìn)一步體會(huì)三角函數(shù)在解決問題過程中的應(yīng)用。

3、經(jīng)歷實(shí)際問題數(shù)學(xué)化的過程,在獨(dú)立思考探索解決問題方法的過程中,不斷克服困難,增強(qiáng)應(yīng)用數(shù)學(xué)的意識(shí)和解決問題的能力。

三、重、難點(diǎn)的確立及依據(jù)

1、重點(diǎn):有關(guān)坡度問題的計(jì)算。

確立依據(jù):坡度問題是很現(xiàn)實(shí)的實(shí)際問題,是應(yīng)用三角函數(shù)解決實(shí)際問題很好的素材,也是中考的重要內(nèi)容,但坡度問題的計(jì)算量較大,學(xué)生計(jì)算能力又很弱,所以很容易出錯(cuò)。故將本節(jié)課重點(diǎn)設(shè)為:有關(guān)坡度問題的計(jì)算。

2、難點(diǎn):建立直角三角形模型,把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題。

確立依據(jù):從認(rèn)知規(guī)律看,學(xué)生已經(jīng)具有初步的探究能力和邏輯思維能力。但直角三角形的應(yīng)用題型較多,有關(guān)坡度問題的情境學(xué)生又不是很熟悉,而且含有很多專有名詞,學(xué)生理解起來(lái)比較困難,導(dǎo)致建立直角三角形模型上可能會(huì)有困難,從而不能把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題。故將本節(jié)課難點(diǎn)設(shè)為:建立直角三角形模型,把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題。

四、教法設(shè)計(jì)

1、教學(xué)結(jié)構(gòu)及教學(xué)基本思路

本節(jié)課主要內(nèi)容是一個(gè)關(guān)于坡度的實(shí)際問題,本節(jié)課采用研究體驗(yàn)式教學(xué),通過問題情境自然引入新課,通過對(duì)實(shí)際問題的探究、拓展,體驗(yàn)實(shí)際問題的解決過程,體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,體會(huì)數(shù)學(xué)思想在解題中的應(yīng)用,提高解題能力,培養(yǎng)數(shù)學(xué)建模意識(shí),通過課堂練習(xí)鞏固知識(shí)。具體思路如下:

⑴ 出示問題情境,讓學(xué)生了解坡度與坡角的關(guān)系,為后繼解題排除知識(shí)的干擾。

⑵ 探究:出示問題1,學(xué)生獨(dú)立思考后小組討論交流。讓學(xué)生先分析解決,體會(huì)實(shí)際問題的解決需要建立數(shù)學(xué)模型來(lái)刻畫實(shí)際問題。

⑶ 拓展與延伸:對(duì)問題1進(jìn)行變式、拓展,要求學(xué)生先畫出示意圖后再分析。

⑷ 課堂練習(xí),及時(shí)鞏固新知。安排兩道簡(jiǎn)單的練習(xí)題供學(xué)生獨(dú)立解決。

⑸師生共同總結(jié),完成本課

2、重、難點(diǎn)的突破方法

通過創(chuàng)設(shè)問題情境,提煉新概念為后續(xù)的學(xué)習(xí)做好必要的準(zhǔn)備,降低問題1的思維量;通過讓學(xué)生主動(dòng)經(jīng)歷探索問題解決的過程,加深對(duì)知識(shí)的理解;通過例題教學(xué),及時(shí)發(fā)現(xiàn)問題并加以糾正;通過課堂練習(xí),提高學(xué)生解決問題的能力,突現(xiàn)本節(jié)課的重點(diǎn)。

通過引導(dǎo)學(xué)生審題、畫圖分析,教師師生點(diǎn)撥,逐步建立數(shù)學(xué)模型;通過幫助學(xué)生根據(jù)需要作出輔助線,從而將梯形中的計(jì)算問題化歸為解直角三角形問題;通過在問題1教學(xué)后引導(dǎo)學(xué)生加以總結(jié):梯形、斜三角形的高時(shí)將其轉(zhuǎn)化為直角三角形的輔助線。解直角三角形本質(zhì)上是解邊角關(guān)系,其他幾何圖形的邊角關(guān)系問題也可以通過作輔助線化歸為解直角三角形來(lái)解決。通過讓學(xué)生說(shuō)思路、寫過程調(diào)動(dòng)學(xué)生探究學(xué)習(xí)的積極性;通過師生、生生間的合作與交流,達(dá)成學(xué)生對(duì)疑難問題的理解與解決,從而突破難點(diǎn)。

3、教輔手段的使用

本節(jié)課主要運(yùn)用講學(xué)稿、小黑板、計(jì)算器等一些簡(jiǎn)易媒體輔助教學(xué),以提高課堂容量,給學(xué)生更多的思考時(shí)間和施展空間。

4、導(dǎo)入和過渡設(shè)計(jì)

由于問題1的情境學(xué)生不是很熟悉,含有很多專有名詞,學(xué)生理解起來(lái)要花費(fèi)較多時(shí)間,會(huì)讓部分學(xué)生產(chǎn)生畏難情緒,影響學(xué)習(xí)新課的信心。因此本節(jié)課由關(guān)于坡度的實(shí)際問題情境引入幾個(gè)新概念,為后面對(duì)問題的探究做好準(zhǔn)備,同時(shí)也能自然導(dǎo)入新課。接下來(lái)的探究活動(dòng),通過巧妙設(shè)計(jì)問題串,為學(xué)生思考作好鋪墊。問題1解決后,對(duì)問題1進(jìn)行簡(jiǎn)單的變式訓(xùn)練,問題解決后,由學(xué)生總結(jié)有關(guān)坡度問題的解決策略。接著是對(duì)問題1的拓廣與延伸,讓學(xué)生進(jìn)一步感受應(yīng)用三角函數(shù)解決更深層次的問題。體會(huì)數(shù)學(xué)問題之間的聯(lián)系,更深刻地認(rèn)識(shí)問題,提高解決問題的能力。學(xué)習(xí)完上述內(nèi)容之后安排兩道課堂鞏固練習(xí)對(duì)所學(xué)知識(shí)進(jìn)行檢測(cè)、補(bǔ)標(biāo)。最后師生共同小結(jié)完成本課。各個(gè)環(huán)節(jié)層層深入、環(huán)環(huán)相扣,過渡自然,構(gòu)成一個(gè)完整的整體。

5、尊重學(xué)生個(gè)體差異,因材施教

應(yīng)用題對(duì)學(xué)生來(lái)說(shuō)是難點(diǎn),課標(biāo)對(duì)這一節(jié)的內(nèi)容要求不高,由于學(xué)生在認(rèn)知水平和學(xué)習(xí)興趣上有較大差異,為了能充分調(diào)動(dòng)全體學(xué)生參與課堂,因此本節(jié)課上有針對(duì)性地設(shè)計(jì)了各層次學(xué)生問題,比如問題情境中的坡度問題、課堂練習(xí)1,問題1中設(shè)計(jì)問題串,把一個(gè)大問題分解成幾個(gè)小問題,以滿足不同層次的學(xué)生。對(duì)學(xué)生感到困難的計(jì)算,讓學(xué)生自己體驗(yàn),同時(shí)選能力較強(qiáng)的學(xué)生上黑板書寫解題過程,供其他學(xué)生學(xué)習(xí)、參考。適時(shí)地安排了小組合作交流活動(dòng),帶動(dòng)每個(gè)同學(xué)參與學(xué)習(xí)。對(duì)于能力較強(qiáng)的學(xué)生,可以把對(duì)問題的思考、分析交給他們,一方面可以活躍課堂,另一方面也能鍛煉他們的能力。通過拓廣與延伸,讓學(xué)有余力的同學(xué)進(jìn)一步探索,培養(yǎng)他們思維的靈活性和深刻性。

五、學(xué)法設(shè)計(jì)

1、學(xué)生學(xué)習(xí)本課應(yīng)采用的方法

我們常說(shuō)授之以魚不如授之以漁因此,在教學(xué)中要特別重視學(xué)法指導(dǎo)。我采用以下的學(xué)習(xí)方法:

(1)、讓學(xué)生在做中學(xué),使學(xué)生動(dòng)起來(lái),大膽表述、質(zhì)疑,讓學(xué)生自主分析,發(fā)現(xiàn)問題,解決問題。經(jīng)歷觀察、探究、建立數(shù)學(xué)模型等活動(dòng),達(dá)成對(duì)問題的更深理解。

(2)、分組討論、交流,努力營(yíng)造自主探究、協(xié)作互動(dòng)的課堂氛圍,達(dá)成對(duì)疑難問題的理解、解決。

(3)多給學(xué)生寫的機(jī)會(huì),在書寫過程中感受知識(shí)的應(yīng)用,提高解題的規(guī)范性和正確率。

2、培養(yǎng)學(xué)生能力應(yīng)采用的方法

學(xué)生是課堂的主人,為了在課堂上培養(yǎng)學(xué)生的能力,得到真實(shí)的學(xué)情反饋,本節(jié)課上能讓學(xué)生說(shuō)的就讓學(xué)生說(shuō),能讓學(xué)生做的就讓學(xué)生做。特別是本節(jié)內(nèi)容,學(xué)生已經(jīng)掌握了一定的解題技巧,但還不成熟;學(xué)生的計(jì)算能力還要進(jìn)一步加強(qiáng)。因此教師要把課堂放手讓給學(xué)生,多讓學(xué)生上黑板板演,并引導(dǎo)大家點(diǎn)評(píng)、發(fā)現(xiàn)問題。這樣不僅能調(diào)動(dòng)學(xué)生學(xué)習(xí)的熱情,還能培養(yǎng)學(xué)生良好的思考習(xí)慣與學(xué)習(xí)能力。

3、學(xué)生主體地位的體現(xiàn)

教學(xué)中堅(jiān)持以學(xué)生為主體,注重所學(xué)內(nèi)容與現(xiàn)實(shí)生活的聯(lián)系,注重使學(xué)生經(jīng)歷觀察、交流等探索過程。并通過追問與設(shè)計(jì)問題的形式,讓學(xué)生在解解決實(shí)際問題的任務(wù)中發(fā)現(xiàn)了新問題,并讓學(xué)生帶著問題探索、交流,在思考中產(chǎn)生新認(rèn)識(shí),獲得新的提高。在突破難點(diǎn)的同時(shí)培養(yǎng)學(xué)生勤于思考,勇于探索的精神,增加學(xué)生的學(xué)習(xí)興趣和享受成功的喜悅。

六、作業(yè)設(shè)計(jì)

根據(jù)不同層次學(xué)生設(shè)計(jì)各層次作業(yè),作業(yè)要體現(xiàn)梯度、針對(duì)性。

1、課堂練習(xí):課堂上完成,師生點(diǎn)評(píng);

2、課后鞏固:供學(xué)生課間完成;

3、課時(shí)作業(yè):另發(fā)。

高中三角函數(shù)教材分析與反思 篇2

教學(xué)準(zhǔn)備

教學(xué)目標(biāo)

解三角形及應(yīng)用舉例

教學(xué)重難點(diǎn)

解三角形及應(yīng)用舉例

教學(xué)過程

一.基礎(chǔ)知識(shí)精講

掌握三角形有關(guān)的定理

利用正弦定理,可以解決以下兩類問題:

(1)已知兩角和任一邊,求其他兩邊和一角;

(2)已知兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角(從而進(jìn)一步求出其他的邊和角);利用余弦定理,可以解決以下兩類問題:

(1)已知三邊,求三角;

(2)已知兩邊和它們的夾角,求第三邊和其他兩角。

掌握正弦定理、余弦定理及其變形形式,利用三角公式解一些有關(guān)三角形中的三角函數(shù)問題.

二.問題討論

思維點(diǎn)撥:已知兩邊和其中一邊的對(duì)角解三角形問題,用正弦定理解,但需注意解的情況的討論.

思維點(diǎn)撥::三角形中的三角變換,應(yīng)靈活運(yùn)用正、余弦定理.在求值時(shí),要利用三角函數(shù)的有關(guān)性質(zhì).

例6:在某海濱城市附近海面有一臺(tái)風(fēng),據(jù)檢測(cè),當(dāng)前臺(tái)風(fēng)中心位于城市O(如圖)的.東偏南方向300 km的海面P處,并以20 km / h的速度向西偏北的方向移動(dòng),臺(tái)風(fēng)侵襲的范圍為圓形區(qū)域,當(dāng)前半徑為60 km,并以10 km / h的速度不斷增加,問幾小時(shí)后該城市開始受到臺(tái)風(fēng)的侵襲。

一. 小結(jié):

1.利用正弦定理,可以解決以下兩類問題:

(1)已知兩角和任一邊,求其他兩邊和一角;

(2)已知兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角(從而進(jìn)一步求出其他的邊和角);

2.利用余弦定理,可以解決以下兩類問題:

(1)已知三邊,求三角;

(2)已知兩邊和它們的夾角,求第三邊和其他兩角。

3.邊角互化是解三角形問題常用的手段.

三.作業(yè):P80闖關(guān)訓(xùn)練

高中三角函數(shù)教材分析與反思 篇3

教學(xué)目標(biāo):

1.掌握基本事件的概念;

2.正確理解古典概型的兩大特點(diǎn):有限性、等可能性;

3.掌握古典概型的概率計(jì)算公式,并能計(jì)算有關(guān)隨機(jī)事件的概率.

教學(xué)重點(diǎn):

掌握古典概型這一模型.

教學(xué)難點(diǎn):

如何判斷一個(gè)實(shí)驗(yàn)是否為古典概型,如何將實(shí)際問題轉(zhuǎn)化為古典概型問題.

教學(xué)方法:

問題教學(xué)、合作學(xué)習(xí)、講解法、多媒體輔助教學(xué).

教學(xué)過程:

一、問題情境

1.有紅心1,2,3和黑桃4,5這5張撲克牌,將其牌點(diǎn)向下置于桌上,現(xiàn)從中任意抽取一張,則抽到的牌為紅心的概率有多大?

二、學(xué)生活動(dòng)

1.進(jìn)行大量重復(fù)試驗(yàn),用“抽到紅心”這一事件的頻率估計(jì)概率,發(fā)現(xiàn)工作量較大且不夠準(zhǔn)確;

2.(1)共有“抽到紅心1” “抽到紅心2” “抽到紅心3” “抽到黑桃4” “抽到黑桃5”5種情況,由于是任意抽取的,可以認(rèn)為出現(xiàn)這5種情況的可能性都相等;

(2)6個(gè);即“1點(diǎn)”、“2點(diǎn)”、“3點(diǎn)”、“4點(diǎn)”、“5點(diǎn)”和“6點(diǎn)”,

這6種情況的可能性都相等;

三、建構(gòu)數(shù)學(xué)

1.介紹基本事件的概念,等可能基本事件的概念;

2.讓學(xué)生自己總結(jié)歸納古典概型的兩個(gè)特點(diǎn)(有限性)、(等可能性);

3.得出隨機(jī)事件發(fā)生的概率公式:

四、數(shù)學(xué)運(yùn)用

1.例題.

例1

有紅心1,2,3和黑桃4,5這5張撲克牌,將其牌點(diǎn)向下置于桌上,現(xiàn)從中任意抽取2張共有多少個(gè)基本事件?(用枚舉法,列舉時(shí)要有序,要注意“不重不漏”)

探究(1):一只口袋內(nèi)裝有大小相同的5只球,其中3只白球,2只黑球,從中一次摸出2只球,共有多少個(gè)基本事件?該實(shí)驗(yàn)為古典概型嗎?(為什么對(duì)球進(jìn)行編號(hào)?)

探究(2):拋擲一枚硬幣2次有(正,反)、(正,正)、(反,反)3個(gè)基本事件,對(duì)嗎?

學(xué)生活動(dòng):探究(1)如果不對(duì)球進(jìn)行編號(hào),一次摸出2只球可能有兩白、一黑一白、兩黑三種情況,“摸到兩黑”與“摸到兩白”的可能性相同;而事實(shí)上“摸到兩白”的機(jī)會(huì)要比“摸到兩黑”的機(jī)會(huì)大.記白球?yàn)?,2,3號(hào),黑球?yàn)?,5號(hào),通過枚舉法發(fā)現(xiàn)有10個(gè)基本事件,而且每個(gè)基本事件發(fā)生的可能性相同.

探究(2):拋擲一枚硬幣2次,有(正,正)、(正,反)、(反,正)、(反,反)四個(gè)基本事件.

(設(shè)計(jì)意圖:加深對(duì)古典概型的特點(diǎn)之一等可能基本事件概念的理解.)

例2

一只口袋內(nèi)裝有大小相同的5只球,其中3只白球,2只黑球,從中

一次摸出2只球,則摸到的'兩只球都是白球的概率是多少?

問題:在運(yùn)用古典概型計(jì)算事件的概率時(shí)應(yīng)當(dāng)注意什么?

①判斷概率模型是否為古典概型

②找出隨機(jī)事件A中包含的基本事件的個(gè)數(shù)和試驗(yàn)中基本事件的總數(shù).

教師示范并總結(jié)用古典概型計(jì)算隨機(jī)事件的概率的步驟

例3

同時(shí)拋兩顆骰子,觀察向上的點(diǎn)數(shù),問:

(1)共有多少個(gè)不同的可能結(jié)果?

(2)點(diǎn)數(shù)之和是6的可能結(jié)果有多少種?

(3)點(diǎn)數(shù)之和是6的概率是多少?

問題:如何準(zhǔn)確的寫出“同時(shí)拋兩顆骰子”所有基本事件的個(gè)數(shù)?

學(xué)生活動(dòng):用課本第102頁(yè)圖3-2-2,可直觀的列出事件A中包含的基本事件的個(gè)數(shù)和試驗(yàn)中基本事件的總數(shù).yjs21.coM

問題:點(diǎn)數(shù)之和是3的倍數(shù)的可能結(jié)果有多少種?

(介紹圖表法)

例4

甲、乙兩人作出拳游戲(錘子、剪刀、布),求:

(1)平局的概率;(2)甲贏的概率;(3)乙贏的概率.

設(shè)計(jì)意圖:進(jìn)一步提高學(xué)生對(duì)將實(shí)際問題轉(zhuǎn)化為古典概型問題的能力.

2.練習(xí).

(1)一枚硬幣連擲3次,只有一次出現(xiàn)正面的概率為_________.

(2)在20瓶飲料中,有3瓶已過了保質(zhì)期,從中任取1瓶,取到已過保質(zhì)期的飲料的概率為_________..

(3)第103頁(yè)練習(xí)1,2.

(4)從1,2,3,…,9這9個(gè)數(shù)字中任取2個(gè)數(shù)字,

①2個(gè)數(shù)字都是奇數(shù)的概率為_________;

②2個(gè)數(shù)字之和為偶數(shù)的概率為_________.

五、要點(diǎn)歸納與方法小結(jié)

本節(jié)課學(xué)習(xí)了以下內(nèi)容:

1.基本事件,古典概型的概念和特點(diǎn);

2.古典概型概率計(jì)算公式以及注意事項(xiàng);

3.求基本事件總數(shù)常用的方法:列舉法、圖表法.

高中三角函數(shù)教材分析與反思 篇4

教材:

角的概念的推廣

目的:

要求學(xué)生掌握用“旋轉(zhuǎn)”定義角的概念,并進(jìn)而理解“正角”“負(fù)角”“象限角”“終邊相同的角”的含義。

過程:

一、提出課題:“三角函數(shù)”

回憶初中學(xué)過的“銳角三角函數(shù)”——它是利用直角三角形中兩邊的比值來(lái)定義的。相對(duì)于現(xiàn)在,我們研究的三角函數(shù)是“任意角的三角函數(shù)”,它對(duì)我們今后的學(xué)習(xí)和研究都起著十分重要的作用,并且在各門學(xué)科技術(shù)中都有廣泛應(yīng)用。

二、角的概念的推廣

1.回憶:初中是任何定義角的?(從一個(gè)點(diǎn)出發(fā)引出的兩條射線構(gòu)成的幾何圖形)這種概念的優(yōu)點(diǎn)是形象、直觀、容易理解,但它的弊端在于“狹隘”

2.講解:“旋轉(zhuǎn)”形成角(P4)

突出“旋轉(zhuǎn)” 注意:“頂點(diǎn)”“始邊”“終邊”

“始邊”往往合于軸正半軸

3.“正角”與“負(fù)角”——這是由旋轉(zhuǎn)的方向所決定的。

記法:角 或 可以簡(jiǎn)記成

4.由于用“旋轉(zhuǎn)”定義角之后,角的范圍大大地?cái)U(kuò)大了。

1° 角有正負(fù)之分 如:a=210° b=-150° g=-660°

2° 角可以任意大

實(shí)例:體操動(dòng)作:旋轉(zhuǎn)2周(360°×2=720°) 3周(360°×3=1080°)

3° 還有零角 一條射線,沒有旋轉(zhuǎn)

三、關(guān)于“象限角”

為了研究方便,我們往往在平面直角坐標(biāo)系中來(lái)討論角

角的頂點(diǎn)合于坐標(biāo)原點(diǎn),角的始邊合于 軸的正半軸,這樣一來(lái),角的終邊落在第幾象限,我們就說(shuō)這個(gè)角是第幾象限的角(角的終邊落在坐標(biāo)軸上,則此角不屬于任何一個(gè)象限)

例如:30° 390° -330°是第Ⅰ象限角 300° -60°是第Ⅳ象限角

585° 1180°是第Ⅲ象限角 -2000°是第Ⅱ象限角等

四、關(guān)于終邊相同的角

1.觀察:390°,-330°角,它們的終邊都與30°角的終邊相同

2.終邊相同的角都可以表示成一個(gè)0°到360°的角與 個(gè)周角的和

390°=30°+360°

-330°=30°-360° 30°=30°+0×360°

1470°=30°+4×360°

-1770°=30°-5×360°

3.所有與a終邊相同的角連同a在內(nèi)可以構(gòu)成一個(gè)集合

即:任何一個(gè)與角a終邊相同的角,都可以表示成角a與整數(shù)個(gè)周角的和

4.例一 (P5 略)

五、小結(jié):

1° 角的概念的推廣用“旋轉(zhuǎn)”定義角 角的范圍的擴(kuò)大

2°“象限角”與“終邊相同的角”

高中三角函數(shù)教材分析與反思 篇5

教學(xué)目的:

掌握?qǐng)A的標(biāo)準(zhǔn)方程,并能解決與之有關(guān)的問題

教學(xué)重點(diǎn):

圓的標(biāo)準(zhǔn)方程及有關(guān)運(yùn)用

教學(xué)難點(diǎn):

標(biāo)準(zhǔn)方程的靈活運(yùn)用

教學(xué)過程:

一、導(dǎo)入新課,探究標(biāo)準(zhǔn)方程

二、掌握知識(shí),鞏固練習(xí)

練習(xí):⒈說(shuō)出下列圓的方程

⑴圓心(3,-2)半徑為5⑵圓心(0,3)半徑為3

⒉指出下列圓的圓心和半徑

⑴(x-2)2+(y+3)2=3

⑵x2+y2=2

⑶x2+y2-6x+4y+12=0

⒊判斷3x-4y-10=0和x2+y2=4的位置關(guān)系

⒋圓心為(1,3),并與3x-4y-7=0相切,求這個(gè)圓的方程

三、引伸提高,講解例題

例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數(shù)的數(shù)學(xué)方法)

練習(xí):1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。

2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。

例2:某圓拱橋的跨度為20米,拱高為4米,在建造時(shí)每隔4米加一個(gè)支柱支撐,求A2P2的長(zhǎng)度。

例3、點(diǎn)M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓(xùn)練思維)

四、小結(jié)練習(xí)P771,2,3,4

五、作業(yè)P811,2,3,4

高中三角函數(shù)教材分析與反思 篇6

教學(xué)目標(biāo)

1.明確等差數(shù)列的定義.

2.掌握等差數(shù)列的通項(xiàng)公式,會(huì)解決知道中的三個(gè),求另外一個(gè)的問題

3.培養(yǎng)學(xué)生觀察、歸納能力.

教學(xué)重點(diǎn)

1.等差數(shù)列的概念;

2.等差數(shù)列的通項(xiàng)公式

教學(xué)難點(diǎn)

等差數(shù)列“等差”特點(diǎn)的理解、把握和應(yīng)用

教具準(zhǔn)備

投影片1張

教學(xué)過程

(I)復(fù)習(xí)回顧

師:上兩節(jié)課我們共同學(xué)習(xí)了數(shù)列的定義及給出數(shù)列的兩種方法通項(xiàng)公式和遞推公式。這兩個(gè)公式從不同的角度反映數(shù)列的特點(diǎn),下面看一些例子。(放投影片)

(Ⅱ)講授新課

師:看這些數(shù)列有什么共同的特點(diǎn)?

1,2,3,4,5,6; ①

10,8,6,4,2,…; ②

生:積極思考,找上述數(shù)列共同特點(diǎn)。

對(duì)于數(shù)列①(1≤n≤6);(2≤n≤6)

對(duì)于數(shù)列②-2n(n≥1)(n≥2)

對(duì)于數(shù)列③(n≥1)(n≥2)

共同特點(diǎn):從第2項(xiàng)起,第一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù)。

師:也就是說(shuō),這些數(shù)列均具有相鄰兩項(xiàng)之差“相等”的特點(diǎn)。具有這種特點(diǎn)的數(shù)列,我們把它叫做等差數(shù)。

一、定義:

等差數(shù)列:一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與空的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d表示。

如:上述3個(gè)數(shù)列都是等差數(shù)列,它們的公差依次是1,-2 。

二、等差數(shù)列的通項(xiàng)公式

師:等差數(shù)列定義是由一數(shù)列相鄰兩項(xiàng)之間關(guān)系而得。若一等差數(shù)列的首項(xiàng)是,公差是d,則據(jù)其定義可得:

若將這n-1個(gè)等式相加,則可得:

即:即:即:……

由此可得:師:看來(lái),若已知一數(shù)列為等差數(shù)列,則只要知其首項(xiàng)和公差d,便可求得其通項(xiàng)。

如數(shù)列①(1≤n≤6)

數(shù)列②:(n≥1)

數(shù)列③:(n≥1)

由上述關(guān)系還可得:即:則:=如:

三、例題講解

例1:(1)求等差數(shù)列8,5,2…的第20項(xiàng)

(2)-401是不是等差數(shù)列-5,-9,-13…的項(xiàng)?如果是,是第幾項(xiàng)?

解:(1)由n=20,得(2)由得數(shù)列通項(xiàng)公式為:由題意可知,本題是要回答是否存在正整數(shù)n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個(gè)數(shù)列的第100項(xiàng)。

(Ⅲ)課堂練習(xí)

生:(口答)課本P118練習(xí)3

(書面練習(xí))課本P117練習(xí)1

師:組織學(xué)生自評(píng)練習(xí)(同桌討論)

(Ⅳ)課時(shí)小結(jié)

師:本節(jié)主要內(nèi)容為:

①等差數(shù)列定義。

即(n≥2)

②等差數(shù)列通項(xiàng)公式(n≥1)

推導(dǎo)出公式:

(V)課后作業(yè)

一、課本P118習(xí)題3.2 1,2

二、1.預(yù)習(xí)內(nèi)容:課本P116例2P117例4

2.預(yù)習(xí)提綱:

①如何應(yīng)用等差數(shù)列的定義及通項(xiàng)公式解決一些相關(guān)問題?

②等差數(shù)列有哪些性質(zhì)?

高中三角函數(shù)教材分析與反思 篇7

[學(xué)習(xí)目標(biāo)]

(1)會(huì)用坐標(biāo)法及距離公式證明Cα+β;

(2)會(huì)用替代法、誘導(dǎo)公式、同角三角函數(shù)關(guān)系式,由Cα+β推導(dǎo)Cα—β、Sα±β、Tα±β,切實(shí)理解上述公式間的關(guān)系與相互轉(zhuǎn)化;

(3)掌握公式Cα±β、Sα±β、Tα±β,并利用簡(jiǎn)單的三角變換,解決求值、化簡(jiǎn)三角式、證明三角恒等式等問題。

[學(xué)習(xí)重點(diǎn)]

兩角和與差的正弦、余弦、正切公式

[學(xué)習(xí)難點(diǎn)]

余弦和角公式的推導(dǎo)

[知識(shí)結(jié)構(gòu)]

1、兩角和的余弦公式是三角函數(shù)一章和、差、倍公式系列的基礎(chǔ)。其公式的證明是用坐標(biāo)法,利用三角函數(shù)定義及平面內(nèi)兩點(diǎn)間的距離公式,把兩角和α+β的余弦,化為單角α、β的三角函數(shù)(證明過程見課本)

2、通過下面各組數(shù)的值的比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應(yīng)該得出如下結(jié)論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。

3、當(dāng)α、β中有一個(gè)是的整數(shù)倍時(shí),應(yīng)首選誘導(dǎo)公式進(jìn)行變形。注意兩角和與差的三角函數(shù)是誘導(dǎo)公式等的基礎(chǔ),而誘導(dǎo)公式是兩角和與差的三角函數(shù)的特例。

4、關(guān)于公式的正用、逆用及變用

高中三角函數(shù)教材分析與反思 篇8

一、基礎(chǔ)知識(shí)回顧:

1、仰角、俯角

2、坡度、坡角

二、基礎(chǔ)知識(shí)回顧:

1、在傾斜角為300的山坡上種樹,要求相鄰兩棵數(shù)間的水平距離為3米,那么相鄰兩棵樹間的斜坡距離為 米

2、升國(guó)旗時(shí),某同學(xué)站在離旗桿底部20米處行注目禮,當(dāng)國(guó)旗升至旗桿頂端時(shí),該同學(xué)視線的仰角為300,若雙眼離地面1.5米,則旗桿高度為 米(保留根號(hào))

3、如圖:B、C是河對(duì)岸的兩點(diǎn),A是對(duì)岸岸邊一點(diǎn),測(cè)得∠ACB=450,BC=60米,則點(diǎn)A到BC的距離是 米。

3、如圖所示:某地下車庫(kù)的入口處有斜坡AB,其坡度I=1:1.5,

則AB=

三、典型例題:

例2、右圖為住宅區(qū)內(nèi)的兩幢樓,它們的高AB=CD=30米,兩樓間的距離AC=24米,現(xiàn)需了解甲樓對(duì)乙樓采光的影響,當(dāng)太陽(yáng)光與水平線的夾角為300時(shí),求甲樓的影子在乙樓上有多高?

例2、如圖所示:在湖邊高出水面50米的山頂A處望見一艘飛艇停留在湖面上空某處,觀察到飛艇底部標(biāo)志P處的仰角為450,又觀其在湖中之像的俯角為600,試求飛艇離湖面的高度h米(觀察時(shí)湖面處于平靜狀態(tài))

例3、如圖所示:某貨船以20海里/時(shí)的速度將一批重要貨物由A處運(yùn)往正西方的B處,經(jīng)過16小時(shí)的航行到達(dá),到達(dá)后必須立即卸貨,此時(shí)接到氣象部門通知,一臺(tái)風(fēng)中心正以40海里/時(shí)的速度由A向北偏西600方向移動(dòng),距離臺(tái)風(fēng)中心200海里的圓形區(qū)域(包括邊界)均會(huì)受到影響。

(1)問B處是否會(huì)受到臺(tái)風(fēng)的影響?請(qǐng)說(shuō)明理由。

(2)為避免受到臺(tái)風(fēng)的影響,該船應(yīng)該在多少小時(shí)內(nèi)卸完貨物?

(供選數(shù)據(jù):=1.4 =1.7)

四、鞏固提高:

1、 若某人沿坡度i=3:4的斜坡前進(jìn)10米,則他所在的位置比原來(lái)的位置升高 米。

2、如圖:A市東偏北600方向一旅游景點(diǎn)M,在A市東偏北300的公路上向前行800米到達(dá)C處,測(cè)得M位于C的北偏西150,則景點(diǎn)M到公路AC的距離為 。(結(jié)果保留根號(hào))

3、同一個(gè)圓的內(nèi)接正方形和它的外切正方形的邊長(zhǎng)之比為( )

A、sin450 B、sin600 C、cos300 D、cos600

3、如圖所示,梯子AB靠在墻上,梯子的底端A到墻根O的距離為2米,梯子的頂端B到地面的距離為7米,現(xiàn)將梯子的底端A向外移動(dòng)到A,使梯子的底端A到墻根O的距離等于3米,同時(shí)梯子的頂端B下降至B,那么BB( )(填序號(hào))

A、等于1米B、大于1米C、小于1米

5、如圖所示:某學(xué)校的教室A處東240米的O點(diǎn)處有一貨物,經(jīng)過O點(diǎn)沿北偏西600方向有一條公路,假定運(yùn)貨車輛形成的噪音影響范圍在130米以內(nèi)。

(1)通過計(jì)算說(shuō)明,公路上車輛的噪音是否對(duì)學(xué)校造成影響?

(2)為了消除噪音對(duì)學(xué)校的影響,計(jì)劃在公路邊修一段隔音墻,請(qǐng)你計(jì)算隔音墻的長(zhǎng)度(只考慮聲音的直線傳播)

高中三角函數(shù)教材分析與反思 篇9

一、目標(biāo)

1.知識(shí)與技能

(1)理解流程圖的順序結(jié)構(gòu)和選擇結(jié)構(gòu)。

(2)能用字語(yǔ)言表示算法,并能將算法用順序結(jié)構(gòu)和選擇結(jié)構(gòu)表示簡(jiǎn)單的流程圖

2.過程與方法

學(xué)生通過模仿、操作、探索、經(jīng)歷設(shè)計(jì)流程圖表達(dá)解決問題的過程,理解流程圖的結(jié)構(gòu)。

3情感、態(tài)度與價(jià)值觀

學(xué)生通過動(dòng)手作圖,.用自然語(yǔ)言表示算法,用圖表示算法。進(jìn)一步體會(huì)算法的基本思想——程序化思想,在歸納概括中培養(yǎng)學(xué)生的邏輯思維能力。

二、重點(diǎn)、難點(diǎn)

重點(diǎn):算法的順序結(jié)構(gòu)與選擇結(jié)構(gòu)。

難點(diǎn):用含有選擇結(jié)構(gòu)的流程圖表示算法。

三、學(xué)法與教學(xué)用具

學(xué)法:學(xué)生通過動(dòng)手作圖,.用自然語(yǔ)言表示算法,用圖表示算法,體會(huì)到用流程圖表示算法,簡(jiǎn)潔、清晰、直觀、便于檢查,經(jīng)歷設(shè)計(jì)流程圖表達(dá)解決問題的過程。進(jìn)而學(xué)習(xí)順序結(jié)構(gòu)和選擇結(jié)構(gòu)表示簡(jiǎn)單的流程圖。

教學(xué)用具:尺規(guī)作圖工具,多媒體。

四、教學(xué)思路

(一)、問題引入 揭示題

例1 尺規(guī)作圖,確定線段的一個(gè)5等分點(diǎn)。

要求:同桌一人作圖,一人寫算法,并請(qǐng)學(xué)生說(shuō)出答案。

提問:用字語(yǔ)言寫出算法有何感受?

引導(dǎo)學(xué)生體驗(yàn)到:顯得冗長(zhǎng),不方便、不簡(jiǎn)潔。

教師說(shuō)明:為了使算法的表述簡(jiǎn)潔、清晰、直觀、便于檢查,我們今天學(xué)習(xí)用一些通用圖型符號(hào)構(gòu)成一張圖即流程圖表示算法。

本節(jié)要學(xué)習(xí)的是順序結(jié)構(gòu)與選擇結(jié)構(gòu)。

右圖即是同流程圖表示的'算法。

(二)、觀察類比 理解題

1、 投影介紹流程圖的符號(hào)、名稱及功能說(shuō)明。

符號(hào) 符號(hào)名稱 功能說(shuō)明

終端框 算法開始與結(jié)束

處理框 算法的各種處理操作

判斷框 算法的各種轉(zhuǎn)移

輸入輸出框 輸入輸出操作

指向線 指向另一操作

2、講授順序結(jié)構(gòu)及選擇結(jié)構(gòu)的概念及流程圖

(1)順序結(jié)構(gòu)

依照步驟依次執(zhí)行的一個(gè)算法

流程圖:

(2)選擇結(jié)構(gòu)

對(duì)條進(jìn)行判斷決定后面的步驟的結(jié)構(gòu)

流程圖:

3.用自然語(yǔ)言表示算法與用流程圖表示算法的比較

(1)半徑為r的圓的面積公式 當(dāng)r=10時(shí)寫出計(jì)算圓的面積的算法,并畫出流程圖。

解:

算法(自然語(yǔ)言)

①把10賦與r

②用公式 求s

③輸出s

流程圖

(2) 已知函數(shù) 對(duì)于每輸入一個(gè)X值都得到相應(yīng)的函數(shù)值,寫出算法并畫流程圖。

算法:(語(yǔ)言表示)

① 輸入X值

②判斷X的范圍,若 ,用函數(shù)Y=x+1求函數(shù)值;否則用Y=2-x求函數(shù)值

③輸出Y的值

流程圖

小結(jié):含有數(shù)學(xué)中需要分類討論的或與分段函數(shù)有關(guān)的問題,均要用到選擇結(jié)構(gòu)。

學(xué)生觀察、類比、說(shuō)出流程圖與自然語(yǔ)言對(duì)比有何特點(diǎn)?(直觀、清楚、便于檢查和交流)

(三)模仿操作 經(jīng)歷題

1.用流程圖表示確定線段A.B的一個(gè)16等分點(diǎn)

2.分析講解例2;

分析:

思考:有多少個(gè)選擇結(jié)構(gòu)?相應(yīng)的流程圖應(yīng)如何表示?

流程圖:

(四)歸納小結(jié) 鞏固題

1.順序結(jié)構(gòu)和選擇結(jié)構(gòu)的模式是怎樣的?

2.怎樣用流程圖表示算法。

(五)練習(xí)P99 2

(六)作業(yè)P99 1

高中三角函數(shù)教材分析與反思 篇10

一、教學(xué)內(nèi)容分析

圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無(wú)數(shù)次實(shí)踐后的高度抽象.恰當(dāng)?shù)乩枚x解題,許多時(shí)候能以簡(jiǎn)馭繁.因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強(qiáng)調(diào)定義,學(xué)會(huì)利用圓錐曲線定義來(lái)熟練的解題”。

二、學(xué)生學(xué)習(xí)情況分析

我所任教班級(jí)的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強(qiáng),思維活躍,但計(jì)算能力較差,推理能力較弱,使用數(shù)學(xué)語(yǔ)言的表達(dá)能力也略顯不足。

三、設(shè)計(jì)思想

由于這部分知識(shí)較為抽象,如果離開感性認(rèn)識(shí),容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情.在教學(xué)時(shí),借助多媒體動(dòng)畫,引導(dǎo)學(xué)生主動(dòng)發(fā)現(xiàn)問題、解決問題,主動(dòng)參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率.

四、教學(xué)目標(biāo)

1.深刻理解并熟練掌握?qǐng)A錐曲線的.定義,能靈活應(yīng)用定義解決問題;熟練掌握焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識(shí)求解圓錐曲線的方程。

2.通過對(duì)練習(xí),強(qiáng)化對(duì)圓錐曲線定義的理解,提高分析、解決問題的能力;通過對(duì)問題的不斷引申,精心設(shè)問,引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。

3.借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣.

五、教學(xué)重點(diǎn)與難點(diǎn):

教學(xué)重點(diǎn)

1.對(duì)圓錐曲線定義的理解

2.利用圓錐曲線的定義求“最值”

3.“定義法”求軌跡方程

教學(xué)難點(diǎn):

巧用圓錐曲線定義解題

六、教學(xué)過程設(shè)計(jì)

【設(shè)計(jì)思路】

(一)開門見山,提出問題

一上課,我就直截了當(dāng)?shù)亟o出——

例題1:(1)已知A(-2,0),B(2,0)動(dòng)點(diǎn)M滿足|MA|+|MB|=2,則點(diǎn)M的軌跡是( )。

(A)橢圓(B)雙曲線(C)線段(D)不存在

(2)已知?jiǎng)狱c(diǎn)M(x,y)滿足(x1)2(y2)2|3x4y|,則點(diǎn)M的軌跡是( )。

(A)橢圓(B)雙曲線(C)拋物線(D)兩條相交直線

【設(shè)計(jì)意圖】

定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個(gè)必備條件,而通過一個(gè)階段的學(xué)習(xí)之后,學(xué)生們對(duì)圓錐曲線的定義已有了一定的認(rèn)識(shí),他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問題。

為了加深學(xué)生對(duì)圓錐曲線定義理解,我以圓錐曲線的定義的運(yùn)用為主線,精心準(zhǔn)備了兩道練習(xí)題。

【學(xué)情預(yù)設(shè)】

估計(jì)多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對(duì)于圓錐曲線的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說(shuō)出:若想答案是其他選項(xiàng)的話,條件要怎么改?這對(duì)于已學(xué)完圓錐曲線這部分知識(shí)的學(xué)生來(lái)說(shuō),并不是什么難事。但問題(2)就可能讓學(xué)生們費(fèi)一番周折——如果有學(xué)生提出:可以利用變形來(lái)解決問題,那么我就可以循著他的思路,先對(duì)原等式做變形:(x1)2(y2)2

5這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5入手,考慮通過適當(dāng)?shù)淖冃?,轉(zhuǎn)化為學(xué)生們熟知的兩個(gè)距離公式。

在對(duì)學(xué)生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標(biāo)是,實(shí)軸長(zhǎng)為,焦距為。以深化對(duì)概念的理解。

(二)理解定義、解決問題

例2 (1)已知?jiǎng)訄AA過定圓B:x2y26x70的圓心,且與定圓C:xy6x910相內(nèi)切,求△ABC面積的最大值。

(2)在(1)的條件下,給定點(diǎn)P(-2,2),求|PA|

【設(shè)計(jì)意圖】

運(yùn)用圓錐曲線定義中的數(shù)量關(guān)系進(jìn)行轉(zhuǎn)化,使問題化歸為幾何中求最大(小)值的模式,是解析幾何問題中的一種常見題型,也是學(xué)生們比較容易混淆的一類問題。例2的設(shè)置就是為了方便學(xué)生的辨析。

【學(xué)情預(yù)設(shè)】

根據(jù)以往的經(jīng)驗(yàn),多數(shù)學(xué)生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實(shí)上,解決本題的關(guān)鍵在于能準(zhǔn)確寫出點(diǎn)A的軌跡,有了練習(xí)題1的鋪墊,這個(gè)問題對(duì)學(xué)生們來(lái)講就顯得頗為簡(jiǎn)單,因此面對(duì)例2(1),多數(shù)學(xué)生應(yīng)該能準(zhǔn)確給出解答,但是對(duì)于例2(2)這樣相對(duì)比較陌生的問題,學(xué)生就無(wú)從下手。我提醒學(xué)生把3/5和離心率聯(lián)系起來(lái),這樣就容易和第二定義聯(lián)系起來(lái),從而找到解決本題的突破口。

(三)自主探究、深化認(rèn)識(shí)

如果時(shí)間允許,練習(xí)題將為學(xué)生們提供一次數(shù)學(xué)猜想、試驗(yàn)的機(jī)會(huì)。

練習(xí):設(shè)點(diǎn)Q是圓C:(x1)2225|AB|的最小值。 3y225上動(dòng)點(diǎn),點(diǎn)A(1,0)是圓內(nèi)一點(diǎn),AQ的垂直平分線與CQ交于點(diǎn)M,求點(diǎn)M的軌跡方程。

引申:若將點(diǎn)A移到圓C外,點(diǎn)M的軌跡會(huì)是什么?

【設(shè)計(jì)意圖】練習(xí)題設(shè)置的目的是為學(xué)生課外自主探究學(xué)習(xí)提供平臺(tái),當(dāng)然,如果課堂上時(shí)間允許的話,

可借助“多媒體課件”,引導(dǎo)學(xué)生對(duì)自己的結(jié)論進(jìn)行驗(yàn)證。

【知識(shí)鏈接】

(一)圓錐曲線的定義

1.圓錐曲線的第一定義

2.圓錐曲線的統(tǒng)一定義

(二)圓錐曲線定義的應(yīng)用舉例

1.雙曲線1的兩焦點(diǎn)為F1、F2,P為曲線上一點(diǎn),若P到左焦點(diǎn)F1的距離為12,求P到右準(zhǔn)線的距離。

2.|PF1||PF2|2.P為等軸雙曲線x2y2a2上一點(diǎn),F(xiàn)1、F2為兩焦點(diǎn),O為雙曲線的中心,求的|PO|取值范圍。

3.在拋物線y22px上有一點(diǎn)A(4,m),A點(diǎn)到拋物線的焦點(diǎn)F的距離為5,求拋物線的方程和點(diǎn)A的坐標(biāo)。

4.(1)已知點(diǎn)F是橢圓1的右焦點(diǎn),M是這橢圓上的動(dòng)點(diǎn),A(2,2)是一個(gè)定點(diǎn),求|MA|+|MF|的最小值。

(2)已知A(,3)為一定點(diǎn),F(xiàn)為雙曲線1的右焦點(diǎn),M在雙曲線右支上移動(dòng),當(dāng)|AM||MF|最小時(shí),求M點(diǎn)的坐標(biāo)。

(3)已知點(diǎn)P(-2,3)及焦點(diǎn)為F的拋物線y,在拋物線上求一點(diǎn)M,使|PM|+|FM|最小。

5.已知A(4,0),B(2,2)是橢圓1內(nèi)的點(diǎn),M是橢圓上的動(dòng)點(diǎn),求|MA|+|MB|的最小值與最大值。

七、教學(xué)反思

1.本課將借助于,將使全體學(xué)生參與活動(dòng)成為可能,使原來(lái)令人難以理解的抽象的數(shù)學(xué)理論變得形象,生動(dòng)且通俗易懂,同時(shí),運(yùn)用“多媒體課件”輔助教學(xué),節(jié)省了板演的時(shí)間,從而給學(xué)生留出更多的時(shí)間自悟、自練、自查,充分發(fā)揮學(xué)生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學(xué)理念的有機(jī)結(jié)合的教學(xué)優(yōu)勢(shì)。

2.利用兩個(gè)例題及其引申,通過一題多變,層層深入的探索,以及對(duì)猜測(cè)結(jié)果的檢測(cè)研究,培養(yǎng)學(xué)生思維能力,使學(xué)生從學(xué)會(huì)一個(gè)問題的求解到掌握一類問題的解決方法.循序漸進(jìn)的讓學(xué)生把握這類問題的解法;將學(xué)生容易混淆的兩類求“最值問題”并為一道題,方便學(xué)生進(jìn)行比較、分析。雖然從表面上看,我這一堂課的教學(xué)容量不大,但事實(shí)上,學(xué)生們的思維運(yùn)動(dòng)量并不會(huì)小。

總之,如何更好地選擇符合學(xué)生具體情況,滿足教學(xué)目標(biāo)的例題與練習(xí)、靈活把握課堂教學(xué)節(jié)奏仍是我今后工作中的一個(gè)重要研究課題.而要能真正進(jìn)行素質(zhì)教育,培養(yǎng)學(xué)生的創(chuàng)新意識(shí),自己首先必須更新觀念——在教學(xué)中適度使用多媒體技術(shù),讓學(xué)生有參與教學(xué)實(shí)踐的機(jī)會(huì),能夠使學(xué)生在學(xué)習(xí)新知識(shí)的同時(shí),激發(fā)起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗(yàn),于不知不覺中改善了他們的思維品質(zhì),提高了數(shù)學(xué)思維能力。

幼師資料《高中三角函數(shù)教材分析與反思(摘錄十篇)》一文希望您能收藏!“幼兒教師教育網(wǎng)”是專門為給您提供幼師資料而創(chuàng)建的網(wǎng)站。同時(shí),yjs21.com還為您精選準(zhǔn)備了小班三角形反思專題,希望您能喜歡!

相關(guān)推薦

  • 高中數(shù)學(xué)三角函數(shù)專題教案(分享7篇) 作為一位不辭辛勞的人民教師,通常需要用到教案來(lái)輔助教學(xué),借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。教案應(yīng)該怎么寫才好呢?下面是小編精心整理的高三數(shù)學(xué)三角函數(shù)復(fù)習(xí)教案,供大家參考借鑒,希望可以幫助到有需要的朋友。高中數(shù)學(xué)三角函數(shù)專題教案 篇1一、教材分析及處理函數(shù)是高中數(shù)學(xué)的重要內(nèi)容之...
    2024-10-09 閱讀全文
  • 高中數(shù)學(xué)三角函數(shù)教學(xué)設(shè)計(jì)案例(匯總十篇) 作為一位優(yōu)秀的人民教師,總不可避免地需要編寫教學(xué)設(shè)計(jì),教學(xué)設(shè)計(jì)是教育技術(shù)的組成部分,它的功能在于運(yùn)用系統(tǒng)方法設(shè)計(jì)教學(xué)過程,使之成為一種具有操作性的程序。那要怎么寫好教學(xué)設(shè)計(jì)呢?下面是小編收集整理的三角函數(shù)教學(xué)設(shè)計(jì)范文,歡迎閱讀,希望大家能夠喜歡。高中數(shù)學(xué)三角函數(shù)教學(xué)設(shè)計(jì)案例 篇1教學(xué)目標(biāo)...
    2024-09-15 閱讀全文
  • 高中數(shù)學(xué)三角函數(shù)教學(xué)計(jì)劃方案 高中數(shù)學(xué)作文三大主科之一,對(duì)高考的拉分起到很大的作用。做好一個(gè)完整的高中數(shù)學(xué)教學(xué)工作計(jì)劃,才能使工作更加有效的快速完成。以下是小編為大家整理的高三數(shù)學(xué)教學(xué)工作計(jì)劃(精選9篇),希望能夠幫助到大家。高中數(shù)學(xué)三角函數(shù)教學(xué)計(jì)劃方案 篇1一、指導(dǎo)思想以學(xué)校和高三年部的教學(xué)計(jì)劃為目標(biāo),深化鉆研教材...
    2024-09-06 閱讀全文
  • 高中三角函數(shù)公式教案(精華八篇) 總結(jié)就是把一個(gè)時(shí)段的學(xué)習(xí)、工作或其完成情況進(jìn)行一次全面系統(tǒng)的總結(jié),它有助于我們尋找工作和事物發(fā)展的規(guī)律,從而掌握并運(yùn)用這些規(guī)律,讓我們好好寫一份總結(jié)吧。那么總結(jié)應(yīng)該包括什么內(nèi)容呢?以下是小編整理的高中三角函數(shù)公式總結(jié),僅供參考,希望能夠幫助到大家。高中三角函數(shù)公式教案 篇1一、教學(xué)目標(biāo):...
    2024-10-10 閱讀全文
  • 高中三角函數(shù)教學(xué)目標(biāo)(精品七篇) 光陰的迅速,一眨眼就過去了,我們又將學(xué)習(xí)新的知識(shí),有新的感受,是不是需要好好寫一份教學(xué)計(jì)劃呢?但是教學(xué)計(jì)劃要寫什么內(nèi)容才能讓人眼前一亮呢?下面是小編整理的高三藝術(shù)班數(shù)學(xué)教學(xué)計(jì)劃,歡迎閱讀與收藏。高中三角函數(shù)教學(xué)目標(biāo) 篇1一、指導(dǎo)思想:研究新教材,了解新的信息,更新觀念,倡導(dǎo)理性思維,重視...
    2024-09-29 閱讀全文

作為一位不辭辛勞的人民教師,通常需要用到教案來(lái)輔助教學(xué),借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。教案應(yīng)該怎么寫才好呢?下面是小編精心整理的高三數(shù)學(xué)三角函數(shù)復(fù)習(xí)教案,供大家參考借鑒,希望可以幫助到有需要的朋友。高中數(shù)學(xué)三角函數(shù)專題教案 篇1一、教材分析及處理函數(shù)是高中數(shù)學(xué)的重要內(nèi)容之...

2024-10-09 閱讀全文

作為一位優(yōu)秀的人民教師,總不可避免地需要編寫教學(xué)設(shè)計(jì),教學(xué)設(shè)計(jì)是教育技術(shù)的組成部分,它的功能在于運(yùn)用系統(tǒng)方法設(shè)計(jì)教學(xué)過程,使之成為一種具有操作性的程序。那要怎么寫好教學(xué)設(shè)計(jì)呢?下面是小編收集整理的三角函數(shù)教學(xué)設(shè)計(jì)范文,歡迎閱讀,希望大家能夠喜歡。高中數(shù)學(xué)三角函數(shù)教學(xué)設(shè)計(jì)案例 篇1教學(xué)目標(biāo)...

2024-09-15 閱讀全文

高中數(shù)學(xué)作文三大主科之一,對(duì)高考的拉分起到很大的作用。做好一個(gè)完整的高中數(shù)學(xué)教學(xué)工作計(jì)劃,才能使工作更加有效的快速完成。以下是小編為大家整理的高三數(shù)學(xué)教學(xué)工作計(jì)劃(精選9篇),希望能夠幫助到大家。高中數(shù)學(xué)三角函數(shù)教學(xué)計(jì)劃方案 篇1一、指導(dǎo)思想以學(xué)校和高三年部的教學(xué)計(jì)劃為目標(biāo),深化鉆研教材...

2024-09-06 閱讀全文

總結(jié)就是把一個(gè)時(shí)段的學(xué)習(xí)、工作或其完成情況進(jìn)行一次全面系統(tǒng)的總結(jié),它有助于我們尋找工作和事物發(fā)展的規(guī)律,從而掌握并運(yùn)用這些規(guī)律,讓我們好好寫一份總結(jié)吧。那么總結(jié)應(yīng)該包括什么內(nèi)容呢?以下是小編整理的高中三角函數(shù)公式總結(jié),僅供參考,希望能夠幫助到大家。高中三角函數(shù)公式教案 篇1一、教學(xué)目標(biāo):...

2024-10-10 閱讀全文

光陰的迅速,一眨眼就過去了,我們又將學(xué)習(xí)新的知識(shí),有新的感受,是不是需要好好寫一份教學(xué)計(jì)劃呢?但是教學(xué)計(jì)劃要寫什么內(nèi)容才能讓人眼前一亮呢?下面是小編整理的高三藝術(shù)班數(shù)學(xué)教學(xué)計(jì)劃,歡迎閱讀與收藏。高中三角函數(shù)教學(xué)目標(biāo) 篇1一、指導(dǎo)思想:研究新教材,了解新的信息,更新觀念,倡導(dǎo)理性思維,重視...

2024-09-29 閱讀全文