作為一無名無私奉獻的教育工作者,通常需要準備好一份說課稿,借助說課稿可以讓教學工作更科學化。那么你有了解過說課稿嗎?以下是小編收集整理的高中數(shù)學集合的說課稿,希望對大家有所幫助。
教學目標:
1.知識技能目標:在具體的情境中使學生感受集合的思想,感知集合圖的產生過程。
2.數(shù)學思考目標:
能借助直觀圖理解題意,同時使學生在解決問題的過程中進一步體會集合的思想,進而形成策略。
3.問題解決目標:
(1).能借助直觀圖,利用集合的思想方法解決簡單的實際問題。
(2).滲透多種方法解決重疊問題的意識。
4.情感態(tài)度目標:
(1)培養(yǎng)學生善于觀察、善于思考的能力。
(2)手腦結合、學中激趣,體驗合作樂趣,養(yǎng)成良好習慣。
教學重難點:
1.重點:體會集合思想,利用集合的思想方法解決簡單的重疊問題,并且能用數(shù)學語言進行描述。
2.難點:對重疊部分的理解;學會用集合圖來表示事物之間的關系。
教具準備:
多媒體課件、微視頻、切換筆、可以活動的姓名卡片、直尺、磁鐵、雙面膠、5朵紅花和5個五角星。一張大白紙。
學具準備:
常規(guī)學具、彩筆、作業(yè)本。
教學過程:
一、創(chuàng)設情境,引入新課
1.激情導入,引出例題
師:上課之前,我們一起來欣賞一段視頻,希望同學們認真仔細的觀看,隨后,要回答老師的提問。請看大屏幕……(課件出示奉獻愛心、從小做起的微視頻)
師:看完這段精彩而又讓人感動的畫面后,你有什么想說的嗎?在今后的生活中,如果遇到需要幫助的人或事,你應該怎么做呢?(各抒己見)
師:同學們說的真好!那么,我們荔東小學的同學們也是一方有難、八方支援,非常有愛心。請看大屏幕:這是我校三一班其中一個小組同學向災區(qū)“獻愛心”的情況。請同學們認真仔細地觀察這幅表格,你從中都發(fā)現(xiàn)了哪些數(shù)學信息?
設計意圖:激發(fā)學生學習興趣的同時,滲透奉獻愛心、從小做起,一方有難、八方支援的愛心教育。
三一班某小組同學“獻愛心”的情況:
生1:我發(fā)現(xiàn)在這次“獻愛心”活動中,有捐款的,還有捐物的。
生2:我發(fā)現(xiàn)捐款的有5人,捐物的有6人。
師:你能提出一個數(shù)學問題嗎?
生1:捐款的比捐物的少幾人?
生2:捐物的比捐款的.多幾人?
生3:捐款的和捐物的一共多少人?
2.設問質疑,引發(fā)沖突
師:參加捐款捐物的一共有多少人?如何解答?
生:11人、10人、9人。
師:這么一個簡單的問題怎么會有這么多不同的答案呢?
生:里面的同學重復了。
師:哪里重復了?(李彤和任一,課件閃動。)
看來這張表格不能讓我們很清楚的看出一共有多少人?那你們能不能想想辦法,在不改變題意的前提下,將表格中的名字作以調整,讓人們很清楚的看出一共有多少人?為此,老師特意為大家準備了一個可以隨意活動姓名的表格。請看黑板:(揭示黑板上的活動表格)
師:下面請同學們分組討論,如何去調整表格?
二、小組交流,探究新知
圈一圈。
師:請同學們觀察這張調整后的表格,捐款的都有哪些人?捐物的都有哪些人?你能分別把它們圈出來嗎?
設計意圖:(不同顏色的粉筆圈出來更明顯)為韋恩圖的形成奠定基礎。
探究韋恩圖
師:為了讓大家看的更清楚、更直觀,請看大屏幕:
(1)取消表格。
表示捐款和捐物的人名單我們已經(jīng)用線圈起來了,底下的表格已經(jīng)沒有用了,可以將它取消。
(2)捐款的移到左邊,捐物的移到右邊。
(3)線條歪歪曲曲的,將它畫好就更美觀了。(課件出現(xiàn)韋恩圖)
設計意圖:感受韋恩圖的形成過程,讓學生親身經(jīng)歷知識的形成過程。
(4)介紹韋恩圖。
師:在很久以前,就有人給它起了個名字,叫韋恩圖。(出現(xiàn)韋恩圖三個字)你們知道為什么把它稱作韋恩圖嗎?因為這是英國著名的數(shù)學家韋恩在19世紀發(fā)明的,后來,就把這樣的圖叫韋恩圖,也叫集合圖。今天,我們就一起探究有關集合的知識《數(shù)學廣角》——集合。(板書課題)
設計意圖:介紹課外知識,拓寬知識視野。
師:同學們,我們通過自主探究、動手操作、小組討論,將一幅不能很清楚的看到“捐款和捐物一共有多少人?”的`表格,經(jīng)過旋轉演變后,轉化成這副既科學合理又形象直觀的韋恩圖,你們真的很了不起!師:請大家仔細觀察大屏幕,回答老師的提問。
列式計算。
(1)課件分別出示韋恩圖的五個部分,學生分別說出每部分所表示的含義,課件一一呈現(xiàn)數(shù)學信息。
師:同學們看懂韋恩圖了,也真正領悟到了每部分所表示的含義,并且,從中發(fā)現(xiàn)了這么多的數(shù)學信息,現(xiàn)在,你能計算出捐款和捐物的一共有多少人嗎?請同學們獨立解答。
(2)計算板演。
方法一:5+6-2=9(人)答:捐款和捐物的一共有9人。(貼答數(shù))
討論:為什么要減2?(因為有2個人既捐款又捐物)
方法二:3+2+4=9(口答)方法三:5+4=9(口答)方法四:3+6=9(口答)
設計意圖:發(fā)展學生思維,體現(xiàn)方法多樣化。
三、實踐應用,鞏固內化
三年級有10名同學參加競賽,其中,參加數(shù)學競賽的有5人,參加作文競賽的有6人。
(1)既參加數(shù)學競賽又參加作文競賽的有幾人?
(2)只參加數(shù)學競賽的有幾人?
(3)只參加作文競賽的有幾人?
設計意圖:有梯度的練習題有利于不同層次的學生均有收獲。舉一反三搶答題強調重點,內化知識;思維訓練題求重疊部分,培養(yǎng)學生的逆向思維,培養(yǎng)學生靈活運用知識解決問題的能力。
四、總結質疑,自我提高
1.學生說這節(jié)課的收獲并質疑
2.互相評價、共同提高(自評互評生評師師評生)
師:同學們,你們課堂上,善于觀察、認真思考、踴躍發(fā)言、敢于創(chuàng)新。表現(xiàn)得非常出色!通過自主探究、小組交流學到了很多關于集合的知識,下面,有請獲得紅花和紅星獎勵的小朋友上臺。紅花站左邊、紅星站右邊。
引發(fā)沖突:兩種都有的學生應該站哪?(中間)請觀察這一排同學,回答問題:
1.獲得紅花獎勵的指哪些同學?
2.獲得紅星獎勵的指哪些同學?
3.既獲得紅花獎勵又獲得紅星獎勵的指哪些同學?
4.只獲得紅花獎勵的指哪些同學?
5.只獲得紅星獎勵的指哪些同學?
6.獲得紅花獎勵和紅星獎勵的一共有多少人?
設計意圖:內化集合知識;實現(xiàn)評價方法的多元化和評價方式的多樣化;滲透養(yǎng)成良好學習習慣的思想教育。
五、作業(yè)布置,知識升華
我是小小設計師。(課后作業(yè))
請以講臺前獲得紅花獎勵和紅星獎勵的學生人數(shù)為題材,用今天所學到的知識,設計一個集合圖。大膽嘗試吧!只要我們能在知識的海洋里成風破浪、歷練出一身好本領,一定會設計并創(chuàng)造出一個屬于自己的精彩人生!
設計意圖:給學生一個開放的空間,以講臺前獲得紅花獎勵和紅星獎勵的學生人數(shù)為題材,用今天所學到的知識,讓學生自主探索,自己設計出集合圖。充分地利用韋恩圖,讓他們明白韋恩圖在平時生活中也是非常有用,同時,培養(yǎng)了學生的創(chuàng)造能力。
一、教學目標:
1.通過高速公路上的實際例子,引起積極的思考和交流,從而認識到生活中處處可以遇到變量間的依賴關系.能夠利用初中對函數(shù)的認識,了解依賴關系中有的是函數(shù)關系,有的則不是函數(shù)關系.
2.培養(yǎng)廣泛聯(lián)想的能力和熱愛數(shù)學的態(tài)度.
二、教學重點:
在于讓學生領悟生活中處處有變量,變量之間充滿了關系
教學難點:培養(yǎng)廣泛聯(lián)想的能力和熱愛數(shù)學的態(tài)度
三、教學方法:
探究交流法
四、教學過程
(一)、知識探索:
閱讀課文P25頁。實例:書上在高速公路情境下的問題。
在高速公路情景下,你能發(fā)現(xiàn)哪些函數(shù)關系?
2.對問題3,儲油量v對油面高度h、油面寬度w都存在依賴關系,兩種依賴關系都有函數(shù)關系嗎?
問題小結:
1.生活中變量及變量之間的依賴關系隨處可見,并非有依賴關系的兩個變量都有函數(shù)關系,只有滿足對于一個變量的每一個值,另一個變量都有確定的值與之對應,才稱它們之間有函數(shù)關系。
2.構成函數(shù)關系的兩個變量,必須是對于自變量的每一個值,因變量都有確定的y值與之對應。
3.確定變量的依賴關系,需分清誰是自變量,誰是因變量,如果一個變量隨著另一個變量的變化而變化,那么這個變量是因變量,另一個變量是自變量。
(二)、新課探究——函數(shù)概念
1.初中關于函數(shù)的定義:
2.從集合的觀點出發(fā),函數(shù)定義:
給定兩個非空數(shù)集A和B,如果按照某個對應關系f,對于A中的任何一個數(shù)x,在集合B中都存在確定的數(shù)f(x)與之對應,那么就把這種對應關系f叫做定義在A上的函數(shù),記作或f:A→B,或y=f(x),x∈A.;
此時x叫做自變量,集合A叫做函數(shù)的定義域,集合{f(x)︱x∈A}叫作函數(shù)的值域。習慣上我們稱y是x的函數(shù)。
定義域,值域,對應法則
4.函數(shù)值
當x=a時,我們用f(a)表示函數(shù)y=f(x)的函數(shù)值。
教學目的:
(1)理解兩個集合的并集與交集的的含義,會求兩個簡單集合的并集與交集;
(2)理解在給定集合中一個子集的補集的含義,會求給定子集的補集;(3)能用Venn圖表達集合的關系及運算,體會直觀圖示對理解抽象概念的作用。
教學重點:
集合的交集與并集、補集的概念;
教學難點:
集合的交集與并集、補集“是什么”,“為什么”,“怎樣做”;
教學過程:
1、引入課題
我們兩個實數(shù)除了可以比較大小外,還可以進行加法運算,類比實數(shù)的加法運算,兩個集合是否也可以“相加”呢?
思考(P9思考題),引入并集概念。
2、新課教學
1.并集
一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,稱為集合A與B的并集(Union)
記作:A∪B讀作:“A并B”
即:A∪B={x|x∈A,或x∈B}
Venn圖表示:
說明:兩個集合求并集,結果還是一個集合,是由集合A與B的所有元素組成的集合(重復元素只看成一個元素)。
例題(P9-10例4、例5)
說明:連續(xù)的(用不等式表示的)實數(shù)集合可以用數(shù)軸上的一段封閉曲線來表示。
問題:在上圖中我們除了研究集合A與B的并集外,它們的公共部分(即問號部分)還應是我們所關心的,我們稱其為集合A與B的交集。
2.交集
一般地,由屬于集合A且屬于集合B的元素所組成的集合,叫做集合A與B的交集(intersection)。
記作:A∩B讀作:“A交B”
即:A∩B={x|∈A,且x∈B}
交集的Venn圖表示
說明:兩個集合求交集,結果還是一個集合,是由集合A與B的公共元素組成的集合。
例題(P9-10例6、例7)
拓展:求下列各圖中集合A與B的并集與交集
說明:當兩個集合沒有公共元素時,兩個集合的交集是空集,而不能說兩個集合沒有交集
3.補集
全集:一般地,如果一個集合含有我們所研究問題中所涉及的所有元素,那么就稱這個集合為全集(Universe),通常記作U。
補集:對于全集U的一個子集A,由全集U中所有不屬于集合A的所有元素組成的.集合稱為集合A相對于全集U的補集(complementary set),簡稱為集合A的`補集,記作:CUA
即:CUA={x|x∈U且x∈A}
補集的Venn圖表示
說明:補集的概念必須要有全集的限制
例題(P12例8、例9)
4.求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區(qū)分交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設條件,結合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結合的思想方法。
5.集合基本運算的一些結論:
A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A
AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A
(CUA)∪A=U,(CUA)∩A=
若A∩B=A,則AB,反之也成立
若A∪B=B,則AB,反之也成立
若x∈(A∩B),則x∈A且x∈B
若x∈(A∪B),則x∈A,或x∈B
6.課堂練習
(1)設A={奇數(shù)}、B={偶數(shù)},則A∩Z=A,B∩Z=B,A∩B=
(2)設A={奇數(shù)}、B={偶數(shù)},則A∪Z=Z,B∪Z=Z,A∪B=Z
3、歸納小結。
各位領導、各位老師:
大家好!
今天我說課的題目是《兩角差的余弦公式》。我計劃從教材背景、教學目標、教學方法、教學過程、教學評價等方面來談談我對本節(jié)課的理解。
背景分析
1、教材所處的地位和作用:
《兩角差的余弦公式》是新課標人教版數(shù)學必修四第三章第一課時的教學內容,是本模塊第一章《三角函數(shù)》和第二章《平面向量》相關知識的延續(xù)和拓展。其中心任務是通過已學知識,探索建立兩角差的余弦公式。它不僅是前面已學的誘導公式的推廣,也是后面其它和(差)角公式推導的基礎和核心,具有承前啟后的作用,是本章的重點內容之一。
2、重點,難點以及確定的依據(jù):
對本節(jié)課來說,學生最大的困惑在于如何得到公式.所以,
本節(jié)課的教學重點是:兩角差的余弦公式的探究和應用;
教學難點是:兩角差的余弦公式的由來及證明;
引導學生通過主動參與,獨立探索。
教學目標設計
(1)知識與技能:
本節(jié)課的知識技能目標定位在公式的向量法證明和應用上;學會運用分類討論思想完善證明;學會正用、逆用、變用公式;學會運用整體思想,抓住公式的本質.在新舊知識的沖撞過程中,讓學生自主地對知識進行重組、構建,形成屬于自己的知識結構體系.
(2)過程與方法:
創(chuàng)設問題情景,調動學生已有的認知結構,激發(fā)學生的問題意識,展開提出問題、分析問題、解決問題的學習活動,讓學生體會從“特殊”到“一般”的探究過程;在探究過程中體會化歸、數(shù)形結合等數(shù)學思想;在公式的證明過程中,培養(yǎng)學生反思的好習慣;在公式的理解記憶過程中,讓學生發(fā)現(xiàn)數(shù)學中的簡潔、對稱美;在公式的運用過程中,培養(yǎng)學生嚴謹?shù)乃季S習慣和自我糾錯能力.
(3)情感、態(tài)度與價值觀:
體驗科學探索的過程,鼓勵學生大膽質疑、大膽猜想,培養(yǎng)學生的“問題意識”,使學生感受科學探索的樂趣,激勵勇氣,培養(yǎng)創(chuàng)新精神和良好的團隊合作意識. 通過對猜想的驗證,對公式證明的完善,培養(yǎng)學生實事求是的科學態(tài)度和科學精神.
教法設計
1、學情分析:
學生剛剛學習了同角三角函數(shù)的變換及平面向量的知識,對用舉反例推翻猜想、運用單位圓、用向量解決三角問題已經(jīng)有了一定的基礎,但還遠未達到綜合運用這些方法自主探究和證明的水平.
教學手段:
(1)從知識的認知程序上看,老師看問題從整體到局部,而學生卻是從局部到整體。本節(jié)課嘗試將“帶著知識走向學生”的接受式教學模式轉變?yōu)椤皫е鴮W生走向知識”的探究式教學模式,充分尊重學生的主體地位.
(2)本節(jié)課的教法采用了“一個主題兩種教學”的設計模式.一個主題:公式探究與應用,兩種教學:顯形教學(知識能力教學)、隱性教學(情商培養(yǎng)),實踐兩種教學相互促進的人性化教學理念.
(3)在課堂上營造民主、開放、平等的教學氛圍,注重教學評價的多元性,將簡單的結果評價上升為對過程的評價;將一味的知識評價拓展為能力評價,突出學生的主體性,實現(xiàn)顯形教學與隱性教學的雙重評價,為全面發(fā)展學生打下基礎.
(4)利用幾何畫板,通過計算機技術,給學生提供一種驗證猜想合理性的途徑. (教學媒體設計)
課堂結構設計:
引入課題,提出猜想,實驗探究,嚴謹證明,例題訓練,課堂小結
教學過程設計
1、引入課題:
例:如圖所示,一個斜坡的高為6m,斜坡的水平長度為8m,已知作用在物體上的力F與水平方向的夾角為60°,且大小為10N ,在力F的作用下物體沿斜坡運動了3m,求力F作用在物體上的功W.
解: W =
= 30.
提問:1、解決問題需要求什么?
2、你能找到哪些與有關的條件?
3、能否利用這些條件求出?如果能,提出你的猜想.
4、怎樣檢驗這些猜想是否正確?
【設計意圖】生活實例引入,體現(xiàn)數(shù)學與實際生活的聯(lián)系,也與物理(功的定義)、哲學(透過現(xiàn)象看本質)等相關學科相聯(lián)系,增強學生的應用意識,激發(fā)學生的學習熱情,同時也讓學生體會數(shù)學知識的產生、發(fā)展過程.
2、提出猜想:
從特殊情況去猜測公式的結構形式.
令
令
分析:可見,我們的公式的形式應該與均有關系?他們之間存在怎樣的代數(shù)關系呢?請同學們根據(jù)下表中數(shù)據(jù),相互交流討論,提出你的猜想.
用具體值檢驗猜想的合理性.
令則=
三角函數(shù)
三角函數(shù)值
猜想:
【設計意圖】鼓勵學生發(fā)揮想象力,大膽猜測,然后再去驗證其合理性,增強學生探索問題、挑戰(zhàn)困難的勇氣.
3、實驗探究:
【設計意圖】讓學生用幾何畫板進行數(shù)學實驗, 激起學生的好奇心和探究欲望, 使學生體會到數(shù)學的系統(tǒng)演繹性和實驗歸納性的兩個側面.
4、嚴謹證明:
(利用向量)
前一章我們剛剛學習完向量,并用向量知識解決了相關的幾何問題,這里,我們能否用向量知識來推導兩角差的余弦公式呢?我們來仔細觀察猜想的結構,我們在什么地方見到過類似結構?在向量部分,求角的余弦有什么方法嗎?
(學生:向量的數(shù)量積!)
證明:在平面直角坐標系xOy內作單位圓O,以Ox為始邊作角,它們終邊與單位圓O的交點分別為A、B,則:
=, =
=
∴= (0≤≤)
思考:1、作為兩向量的夾角,有沒有限制條件?
2、如果不在[0,]這個區(qū)間內,我們的結論還會成立嗎?怎樣給出證明?(引導學生找到與夾角之間的關系)
【設計意圖】讓學生經(jīng)歷用向量知識解出一個數(shù)學問題的過程,體會向量方法在數(shù)學探究過程中的簡潔性。
思考:1、作為兩向量的夾角,有沒有限制條件?
2、如果不在[0,]這個區(qū)間內,我們的結論還會成立嗎?怎樣給出證明?(引導學生找到與夾角之間的關系)
推廣完善:令為、的夾角,
則
無論哪種情況,都有
小結:兩角差的余弦公式:
(其中為任意角,簡記為)
思考:請同學們仔細觀察一下公式的結構,說說公式的結構有什么特點?應怎樣記憶?(對學生的回答給予及時肯定)
【設計意圖】引導學生關注兩個向量的夾角θ與α-β的聯(lián)系與區(qū)別,并通過觀察和討論,增強學生用數(shù)形結合、分類討論的方法解決問題的意識,感受數(shù)學思維的嚴謹性.
(介紹單位圓的三角函數(shù)線法)
除了以上的證明方法,是否還有其它證法呢?
我們發(fā)現(xiàn),這里涉及的是三角函數(shù),是這個角的余弦問題,那我們還能不能考慮在單位圓里用三角函數(shù)線來推導呢?
請同學們課后自己在單位圓中畫出、,并考慮如何用角的正弦線、余弦線來表示的余弦線?
這個問題作為課后思考題,請同學們課下相互討論,共同探索。
【設計意圖】根據(jù)教學實際,對教材進行適當安排,把單位圓三角函數(shù)線證法留作課后學生思考,為學生的課后探討留有空間。
5、例題訓練:
1、解決引例中的問題.
2、P127練習:已知,求.
(運用公式時應根據(jù)角的范圍,正確確定兩角正、余弦值的范圍)
公式的逆用:.
4、公式活用:.
【設計意圖】例1讓學生運用所學解決實際問題;例2利用變式突破學生在運用公式過程中的易錯點;例3對逆用公式解題加深認識;例4活用公式,加深學生對公式中兩角形式變化的認識,強化整體思想。
6:課堂小結:
公式探索的一般步驟;公式的結構和功能;公式的運用應注意的問題。
7、作業(yè):
P127 練習1、2、3;
.
【設計意圖】讓學生通過自己小結,反思學習過程,加深對公式的推導和應用過程的理解,促進知識的內化;然后用作業(yè)鞏固本節(jié)課所學知識。
(附:板書設計)
§3.1.1 兩角差的余弦公式
一、公式
二、證明
引例:
例2:
例3:
4:
小結:
教學評價分析
診斷性評價:
1.按常規(guī),學生很可能想到先探究兩角和的正弦公式,怎樣想到先研究兩角差的余弦公式是一個難點(但非重點),教學時可以直接提出研究兩角差的余弦公式。但后面補充老教材的證明方法,讓學生明白和與差內在的聯(lián)系性與統(tǒng)一性,努力讓學習過程自然。
2.盡管教材在前面的習題中,已經(jīng)為用向量法證明兩角差的余弦公式做了鋪墊,多數(shù)學生仍難以想到.教師需要引導學生,聯(lián)想到向量的數(shù)量積公式和單位圓上點的坐標特點,努力使數(shù)學思維顯得自然、合理。
3.用向量的數(shù)量積公式證明兩角差的余弦公式時,學生容易犯思維不嚴謹?shù)腻e誤,教學時需要引導學生搞清楚兩角差與相應向量的夾角的聯(lián)系與區(qū)別。
預期效果:
1、讓學生在掌握兩角差的余弦公式探究方法的基礎上,能夠自我總結形成公式探究的一般方法。
2、激發(fā)學生的探究欲望,能夠獨立或合作提出推導其它三角恒等式的方案,形成對三角恒等變換的本質認識,加深對靈活運用公式的理解。
3、培養(yǎng)學生的“問題意識”,在探索的過程中學會將“知識問題化”,大膽、合理地提出猜測,通過證明、完善,最終達到將“問題知識化”的目的.
一、教材分析。
1、教學目標:
(1)理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項公式的推導過程及思想;
(2)培養(yǎng)學生觀察、分析、歸納、推理的能力;在領會函數(shù)與數(shù)列關系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學生的知識、方法遷移能力;通過階梯性練習,提高學生分析問題和解決問題的能力。
(3)通過對等差數(shù)列的研究,培養(yǎng)學生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細心觀察、認真分析、善于總結的良好思維習慣。
2、教學重點和難點:
(1)等差數(shù)列的概念。
(2)等差數(shù)列的通項公式的推導過程及應用。用不完全歸納法推導等差數(shù)列的通項公式。
二、教法分析。
采用啟發(fā)式、討論式以及講練結合的教學方法,通過問題激發(fā)學生求知欲,使學生主動參與數(shù)學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發(fā)現(xiàn)、分析和解決問題。
三、教學程序。
本節(jié)課的教學過程由:(一)復習引入;(二)新課探究;(三)應用例解;(四)反饋練習;(五)歸納小結;(六)布置作業(yè),六個教學環(huán)節(jié)構成。
(一)復習引入:
1、全國統(tǒng)一鞋號中成年女鞋的各種尺碼(表示鞋底長,單位是cm)分別是21,22,23,24,25。
2、某劇場前10排的座位數(shù)分別是:38,40,42,44,46,48,50,52,54,56。
3、某長跑運動員7天里每天的訓練量(單位:m)是:7500,8000,8500,9000,9500,10000,10500。
共同特點:從第2項起,每一項與前一項的差都等于同一個常數(shù)。
(二) 新課探究。
1、給出等差數(shù)列的概念:
如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列, 這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強調:
(1)“從第二項起”滿足條件;
(2)公差d一定是由后項減前項所得;
(3)公差可以是正數(shù)、負數(shù),也可以是0。
2、推導等差數(shù)列的通項公式:若等差數(shù)列{an }的首項是 ,公差是d, 則據(jù)其定義可得:— =d 即: = +d;– =d 即: = +d = +2d;– =d 即: = +d = +3d……進而歸納出等差數(shù)列的通項公式:= +(n—1)d
此時指出: 這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養(yǎng)學生嚴謹?shù)膶W習態(tài)度,在這里向學生介紹另外一種求數(shù)列通項公式的辦法——————迭加法:– =d;– =d;– =d……– =d。
將這(n—1)個等式左右兩邊分別相加,就可以得到 – = (n—1) d即 = +(n—1) d
當n=1時,上面等式兩邊均為 ,即等式也是成立的,這表明當n∈ 時上面公式都成立,因此它就是等差數(shù)列{an }的通項公式。
接著舉例說明:若一個等差數(shù)列{ }的首項是1,公差是2,得出這個數(shù)列的通項公式是: =1+(n—1)×2 , 即 =2n—1 以此來鞏固等差數(shù)列通項公式運用
(三)應用舉例。
這一環(huán)節(jié)是使學生通過例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向學生表明:要用運動變化的觀點看等差數(shù)列通項公式中的 、d、n、 這4個量之間的關系。當其中的部分量已知時,可根據(jù)該公式求出另一部分量。
例1 :
(1)求等差數(shù)列8,5,2,…的第20項;
(2)—401是不是等差數(shù)列—5,—9,—13,…的項?如果是,是第幾項?
第二問實際上是求正整數(shù)解的問題,而關鍵是求出數(shù)列的通項公式。
例2:
在等差數(shù)列{an}中,已知 =10, =31,求首項 與公差d。
在前面例1的基礎上將例2當作練習作為對通項公式的鞏固。
例3:
梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數(shù)列。計算中間各級的寬度。
(四)反饋練習。
1、小節(jié)后的練習中的第1題和第2題(要求學生在規(guī)定時間內完成)。目的:使學生熟悉通項公式,對學生進行基本技能訓練。
2、若數(shù)列{ } 是等差數(shù)列,若 = k ,(k為常數(shù))試證明:數(shù)列{ }是等差數(shù)列。
此題是對學生進行數(shù)列問題提高訓練,學習如何用定義證明數(shù)列問題同時強化了等差數(shù)列的概念。
(五)歸納小結 。(由學生總結這節(jié)課的收獲)
1、等差數(shù)列的概念及數(shù)學表達式。
強調關鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)
2、等差數(shù)列的通項公式 = +(n—1) d會知三求一
(六) 布置作業(yè)。
1、必做題:課本P114 習題3。2第2,6 題。
2、選做題:已知等差數(shù)列{ }的首項 = —24,從第10項開始為正數(shù),求公差d的取值范圍。(目的:通過分層作業(yè),提高同學們的求知欲和滿足不同層次的學生需求)
四、板書設計。
在板書中突出本節(jié)重點,將強調的地方如定義中,“從第二項起”及“同一常數(shù)”等幾個字用紅色粉筆標注,同時給學生留有作題的地方,整個板書充分體現(xiàn)了精講多練的教學方法。
一、具體目標:
1、獲得必要的數(shù)學基礎知識和基本技能,理解基本的數(shù)學概念、數(shù)學結論的本質,了解概念、結論等產生的背景、應用,體會其中所蘊涵的數(shù)學思想和方法,以及它們在后續(xù)學習中的作用。經(jīng)過不一樣形式的自主學習、探究活動,體驗數(shù)學發(fā)現(xiàn)和創(chuàng)造的歷程。
2、提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本本事。
3、提高數(shù)學地提出、分析和解決問題(包括簡單的實際問題)的本事,數(shù)學表達和交流的本事,發(fā)展獨立獲取數(shù)學知識的本事。
4、發(fā)展數(shù)學應用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學模式進行思考和作出確定。
5、提高學習數(shù)學的興趣,樹立學好數(shù)學的信心,構成鍥而不舍的鉆研精神和科學態(tài)度。
6、具有必須的數(shù)學視野,逐步認識數(shù)學的科學價值、應用價值和文化價值,構成批判性的思維習慣,崇尚數(shù)學的理性精神,體會數(shù)學……
二、本學期要到達的教學目標
1、雙基要求:
在基礎知識方面讓學生掌握高一有關的概念、性質、法則、公式、定理以及由其資料反映出來的數(shù)學思想和方法。在基本技能方面能按照必須的程序與步驟進行運算、處理數(shù)據(jù)、能使用計數(shù)器及簡單的推理、畫圖。
2、本事培養(yǎng):
能運用數(shù)學概念、思想方法,辨明數(shù)學關系,構成良好的思維品質;會根據(jù)法則、公式正確的進行運算、處理數(shù)據(jù),并能根據(jù)問題的情景設計運算途徑;會提出、分析和解決簡單的帶有實際意義的或在相關學科、生產和生活的數(shù)學問題,并進行交流,構成數(shù)學的意思;從而經(jīng)過獨立思考,會從數(shù)學的角度發(fā)現(xiàn)和提出問題,進行探索和研究。
3、思想教育:
培養(yǎng)高一學生,學習數(shù)學的興趣、信心和毅力及實事求是的科學態(tài)度,勇于探索創(chuàng)新的精神,及欣賞數(shù)學的美學價值,并懂的數(shù)學來源于實踐又反作用于實踐的觀點;數(shù)學中普遍存在的對立統(tǒng)一、運動變化、相互聯(lián)系、相互轉化等觀點。
三、進度授課計劃及進度表
(略)
一、上學期教學回顧
高一共四個教學班,共計160余人。楊文國帶高一(一)班,高一(二)班;張忠杰帶高一(三)班和高一(四)班。其中各班期末八校聯(lián)考的成績分別為:50.6分,32.8分,27.2分,34.5分,總平36.9分。學期中途因張忠杰離開學校導致頻繁更換老師,(三)班、(四)班的成績因而受到影響。期末由王山任(三)班、(四)班的數(shù)學老師。
上學期工作在學生學習的落實環(huán)節(jié)上做得不太扎實,這將是本學期重點改進的地方。
二、本學期的措施及打算
1.一周學習早知道。明確目標更能確定努力的方向。為了讓學生學習更有目的性,有效性和積極性,每周第一節(jié)課給出一周的教學進度,學習目標和過關要求。不僅老師要做到對所教內容清楚明了,也要讓學生對所學內容做到每周學習目標清晰化。
2.落實每周測試過關制。周測內容與一周學習目標及一周的講授內容緊密相連。未盡力而又沒有過關的學生將按事先說明的措施給予處罰。以便讓學生重視課堂學習,重視平時作業(yè),重視一周的學習過程。做到讓學生每周學習過程精細化。 3.根據(jù)學生學力狀況進行分層次的培優(yōu)補差。
三、教學進度安排
周次,學習內容
目標要求
1. 必修4 第一章三角函數(shù):第1至3節(jié)
周期,角的推廣及表示,弧度制及互化
2. 軍訓
3. 第4節(jié):正弦函數(shù)
單位圓,正弦函數(shù)定義,象限符號,誘導公式,五點法畫圖像,圖像及性質。
4. 第5節(jié):余弦函數(shù),第6節(jié):正切函數(shù)
余弦函數(shù)正切函數(shù)定義,象限符號,誘導公式,圖像及性質
5. 第7節(jié):xAsiny的圖像,第8節(jié):同角的基本關系。
圖像變換規(guī)律,同角三角函數(shù)的基本關系及其運用。章節(jié)復習,章節(jié)過關測試。
6. 第二章:平面向量:第1節(jié)至第2節(jié)
向量,有向線段,向量的長及相等、平行、共線、單位向量等概念,向量的加減法運算
7. 第3節(jié)至第5節(jié)
數(shù)乘向量,基本定理,向量運算的鞏固訓練,平面向量的坐標表示及運算。數(shù)量積的應用。
8. 第5節(jié)至第7節(jié)
數(shù)量積的應用及坐標表示,向量應用舉例。習題課,章節(jié)復習,章節(jié)過關測試。
9. 第三章:三角恒等變換:第1節(jié)至第2節(jié)
兩角和差的公式得推導,記憶及靈活運用,二倍角公式得來源及運用。期中復習。
10. 期中考試
期中復習,期中考試。
11. 第三章 第3節(jié):三角函數(shù)的簡單應用
試卷講評改錯,簡單應用,三角恒等變換的綜合習題課,練習,章節(jié)復習,必修4基本測試。
12. 五一長假
13. 必修3 第一章:統(tǒng)計。第1節(jié)至第5節(jié)
統(tǒng)計的程序,統(tǒng)計圖,統(tǒng)計方案設計,普查與抽樣,抽樣方法,分層抽樣與系統(tǒng)抽樣,花統(tǒng)計圖表及讀統(tǒng)計圖表,數(shù)字特征:平均數(shù),中位數(shù),眾數(shù),級差,方差的意義及計算分析,
14. 第6節(jié)至第9節(jié)
樣本對總本的估計及相應的數(shù)字特征的計算分析,統(tǒng)計實踐活動,變量的相關性及例題分析,最小二乘估計。章節(jié)復習,章節(jié)過關測試。
15. 第二章:算法初步:第1節(jié)至第3節(jié)
基本思想,基本結構及設計,排序問題。
16. 第4節(jié):幾種基本語句
條件語句,循環(huán)語句,復習三角函數(shù)的基本內容,章節(jié)復習,三角函數(shù)與算法初步過關測試。
17. 第三章:概率:第1節(jié)至第2節(jié)
頻率,概率,古典概率,概率計算公式。
18. 第2節(jié)至第3節(jié)
建概率模型,互斥事件,習題課節(jié)復習,章節(jié)過關測試。
19. 期末復習
20. 期末復習,期末考試
相信《高中數(shù)學集合講解PPT內容(收藏七篇)》一文能讓您有很多收獲!“幼兒教師教育網(wǎng)”是您了解幼師資料,工作計劃的必備網(wǎng)站,請您收藏yjs21.com。同時,編輯還為您精選準備了高中數(shù)學教學專題,希望您能喜歡!
相關推薦
作為一位不辭辛勞的人民教師,往往需要進行教案編寫工作,教案有助于學生理解并掌握系統(tǒng)的知識。那么應當如何寫教案呢?以下是小編精心整理的高一數(shù)學三角函數(shù)教案,供大家參考借鑒,希望可以幫助到有需要的朋友。高中數(shù)學三角函數(shù)PPT內容優(yōu)秀課件 篇1《銳角三角函數(shù)》(第一課時),所選用的教材為人教版義務...
上學期間,許多人都參加過一些經(jīng)典主題的主題班會吧?主題班會是班主任根據(jù)教育、教學要求和班級學生的實際情況確立主題、圍繞主題開展的一種班會活動。那么,主題班會都有哪些類型的呢?下面是小編幫大家整理的高中主題班會教案,僅供參考,大家一起來看看吧。高中主題班會ppt內容 篇1 一、主題:在青春里成...
在我們平凡無奇的學生時代,大家都參加過令自己印象深刻的主題班會吧?主題班會是班主任根據(jù)教育、教學要求和班級學生的實際情況確立主題、圍繞主題開展的一種班會活動。還在為準備主題班會而發(fā)愁嗎?以下是小編整理的冬至主題班會教案,希望對大家有所幫助。冬至班會課PPT內容 篇1活動目的:1、冬至時節(jié)...
作為一位無私奉獻的人民教師,常常要寫一份優(yōu)秀的教案,教案是教學藍圖,可以有效提高教學效率。來參考自己需要的教案吧!下面是小編整理的元旦假期安全教育教案,僅供參考,大家一起來看看吧。元旦安全教育ppt內容圖片內容 篇1教學目標:通過開展以“ 珍愛生命,安全第一”為主題的安全知識教育班會,增...
作為一位杰出的老師,就不得不需要編寫教案,教案是實施教學的主要依據(jù),有著至關重要的作用。來參考自己需要的教案吧!以下是小編為大家整理的高中開學第一課主題班會教案(精選4篇),希望對大家有所幫助。高中開學第一課ppt內容 篇1教學目的1、 通過本次主題班會,使學生進一步了解良好的學習習慣對...
最新更新