幼兒教師教育網(wǎng),為您提供優(yōu)質(zhì)的幼兒相關(guān)資訊

余弦定理教案匯集九篇

發(fā)布時(shí)間:2024-03-27

在老師日常工作中,教案課件也是其中一種,老師在寫教案課件的時(shí)候不能敷衍了事。教案是為教師規(guī)范教學(xué)行為和提升教學(xué)水平提供的有力支持,怎么樣的教案才算是好教案課件?幼兒教師教育網(wǎng)小編為大家篩選了一篇題為“余弦定理教案”的推薦閱讀,我們的網(wǎng)站會持續(xù)更新歡迎您收藏并隨時(shí)關(guān)注我們的動態(tài)!

余弦定理教案(篇1)

一、教材分析

《余弦定理》選自人教A版高中數(shù)學(xué)必修五第一章第一節(jié)第一課時(shí)。本節(jié)課的主要教學(xué)內(nèi)容是余弦定理的內(nèi)容及證明,以及運(yùn)用余弦定理解決“兩邊一夾角”“三邊”的解三角形問題。

余弦定理的學(xué)習(xí)有充分的基礎(chǔ),初中的勾股定理、必修一中的向量知識、上一課時(shí)的正弦定理都是本節(jié)課內(nèi)容學(xué)習(xí)的知識基礎(chǔ),同時(shí)又對本節(jié)課的學(xué)習(xí)提供了一定的方法指導(dǎo)。其次,余弦定理在高中解三角形問題中有著重要的地位,是解決各種解三角形問題的常用方法,余弦定理也經(jīng)常運(yùn)用于空間幾何中,所以余弦定理是高中數(shù)學(xué)學(xué)習(xí)的一個(gè)十分重要的內(nèi)容。

二、教學(xué)目標(biāo)

知識與技能:

1、理解并掌握余弦定理和余弦定理的推論。

2、掌握余弦定理的推導(dǎo)、證明過程。

3、能運(yùn)用余弦定理及其推論解決“兩邊一夾角”“三邊”問題。

過程與方法:

1、通過從實(shí)際問題中抽象出數(shù)學(xué)問題,培養(yǎng)學(xué)生知識的遷移能力。

2、通過直角三角形到一般三角形的.過渡,培養(yǎng)學(xué)生歸納總結(jié)能力。

3、通過余弦定理推導(dǎo)證明的過程,培養(yǎng)學(xué)生運(yùn)用所學(xué)知識解決實(shí)際問題的能力。

情感態(tài)度與價(jià)值觀:

1、在交流合作的過程中增強(qiáng)合作探究、團(tuán)結(jié)協(xié)作精神,體驗(yàn)解決問題的成功喜悅。

2、感受數(shù)學(xué)一般規(guī)律的美感,培養(yǎng)數(shù)學(xué)學(xué)習(xí)的興趣。

三、教學(xué)重難點(diǎn)

重點(diǎn):余弦定理及其推論和余弦定理的運(yùn)用。

難點(diǎn):余弦定理的發(fā)現(xiàn)和推導(dǎo)過程以及多解情況的判斷。

四、教學(xué)用具

普通教學(xué)工具、多媒體工具(以上均為命題教學(xué)的準(zhǔn)備)

余弦定理教案(篇2)

教材分析:(說教材)。

是全日制普通高級中學(xué)教科書(必修)數(shù)學(xué)第一冊(下)中第五章平面向量第二部分解斜三角形的一個(gè)重要定理。這堂課,我并不是將余弦定理全盤呈現(xiàn)給學(xué)生,而是從實(shí)際問題的求解困難,造成學(xué)生認(rèn)知上的沖突,從而激發(fā)學(xué)生探索新知識的強(qiáng)烈欲望。

另外,本節(jié)與教材其他課文共性是,都要掌握定理內(nèi)容及證明方法,會解決相關(guān)的問題。

下面說一說我的教學(xué)思路。

教學(xué)目的:通過對教材的分析鉆研制定了教學(xué)目的:

1.掌握余弦定理的內(nèi)容及證明余弦定理的向量方法,會運(yùn)用余弦定理解決兩類基本的解三角形問題。2.培養(yǎng)學(xué)生在方程思想指導(dǎo)下解三角形問題的運(yùn)算能力。3.培養(yǎng)學(xué)生合情推理探索數(shù)學(xué)規(guī)律的思維能力。

4.通過三角函數(shù)、余弦定理、向量的數(shù)量積等知識的聯(lián)系理解事物之間普遍聯(lián)系與辯證統(tǒng)一。

教學(xué)重點(diǎn):余弦定理揭示了任意三角形邊角之間的客觀規(guī)律,是解三角形的重要工具。余弦定理是初中學(xué)習(xí)的勾股定理同角的拓廣,也是前階段學(xué)習(xí)的三角函數(shù)知識與平面向量知識在三角形中的交匯應(yīng)用。本節(jié)課的重點(diǎn)內(nèi)容是余弦定理的發(fā)現(xiàn)和證明過程及基本應(yīng)用,其中發(fā)現(xiàn)余弦定理的過程是檢驗(yàn)和訓(xùn)練學(xué)生思維品質(zhì)的重要素材。教學(xué)難點(diǎn):

余弦定理是勾股定理的推廣形式,勾股定理是余弦定理的特殊情形,勾股定理在余弦定理的發(fā)現(xiàn)和證明過程中,起到奠基作用,因此分析勾股定理的結(jié)構(gòu)特征是突破發(fā)現(xiàn)余弦定理這個(gè)難點(diǎn)的關(guān)鍵。教學(xué)方法:

在確定教學(xué)方法之前,首先分析一下學(xué)生:我所教的是課改一年級的學(xué)生。他們的基礎(chǔ)比正常高中的學(xué)生要差許多,拿其中一班學(xué)生來說:數(shù)學(xué)入學(xué)成績及格的占50%左右,相對來說教材難度較大,要求教師吃透教材,選擇恰當(dāng)?shù)慕虒W(xué)方法和教學(xué)手段把知識傳授給學(xué)生。

根據(jù)教材和學(xué)生實(shí)際,本節(jié)主要采用“啟發(fā)式教學(xué)”、“講授法”、“演示法”,并采用電教手段使用多媒體輔助教學(xué)。

1.啟發(fā)式教學(xué):

利用一個(gè)工程問題創(chuàng)設(shè)情景,啟發(fā)學(xué)生對問題進(jìn)行思考。在研究過程中,激發(fā)學(xué)生探索新知識的強(qiáng)烈欲望。2.練習(xí)法:通過練習(xí)題的訓(xùn)練,讓學(xué)生從多角度對所學(xué)定理進(jìn)行認(rèn)識,反復(fù)的練習(xí),體現(xiàn)學(xué)生的主體作用。3.講授法:充分發(fā)揮主導(dǎo)作用,引導(dǎo)學(xué)生學(xué)習(xí)。

這節(jié)課準(zhǔn)備的器材有:計(jì)算機(jī)、大屏幕。教學(xué)程序:

1.復(fù)習(xí)正弦定理(2分鐘):安排一名同學(xué)上黑板寫正弦定理。

2.設(shè)計(jì)精彩的新課導(dǎo)入(5分鐘):利用大屏幕演示一座山,先展示,后出現(xiàn)B、C,再連成虛線,并閃動幾下,閃動邊AB、AC幾下,再閃動角A的陰影幾下,可測得AC、AB的長及∠A大小.問你知道工程技術(shù)人員是怎樣計(jì)算出來的嗎?

一下子,學(xué)生的注意力全被調(diào)動起來,學(xué)生一定會采用正弦定理,但很快發(fā)現(xiàn)∠B、∠C不能確定,陷入困境當(dāng)中。

3.探索研究,合理猜想。

當(dāng)AB=c,AC=b一定,∠A變化時(shí),a可以認(rèn)為是A的函數(shù),a=f(A),A∈(0,∏)

比較三種情況,學(xué)生會很快找到其中規(guī)律.-2ab的系數(shù)-1、0、1與A=0、∏/

2、∏之間存在對應(yīng)關(guān)系.教師指導(dǎo)學(xué)生由特殊到一般,經(jīng)比較分析特例,概括出余弦定理,這種促使學(xué)生主動參與知識形成過程的教學(xué)方法,既符合學(xué)生學(xué)習(xí)的認(rèn)知規(guī)律,又突出了學(xué)生的主體地位?!笆谌艘贼~”,不如“授人以漁”,引導(dǎo)學(xué)生發(fā)現(xiàn)問題,探究知識,建構(gòu)知識,對學(xué)生來說,既是對數(shù)學(xué)研究活動的一種體驗(yàn),又是掌握一種終身受用的治學(xué)方法。4.證明猜想,建構(gòu)新知

接下來就是水到渠成,現(xiàn)在余弦定理還需要進(jìn)一步證明,要符合數(shù)學(xué)的嚴(yán)密邏輯推理,鍛煉學(xué)生自己寫出定理證明的已知條件和結(jié)論,請一位學(xué)生到黑板寫出來,并請同學(xué)們自己進(jìn)行證明。教師在課中進(jìn)行指導(dǎo),針對出現(xiàn)的問題,結(jié)合大屏幕打出的正確過程進(jìn)行講解。

在大屏幕打出余弦定理,為了促進(jìn)學(xué)生記憶,在黑板上讓學(xué)生背著寫出定理,也是當(dāng)堂鞏固定理的方法。5.操作演練,鞏固提高。

定理的應(yīng)用是本節(jié)的重點(diǎn)之一。我分析題目,請同學(xué)們進(jìn)行解答,在難點(diǎn)處進(jìn)行點(diǎn)撥。以第二題為例,在求A的過程中學(xué)生會產(chǎn)生分歧,一部分采用正弦定理,一部分采用余弦定理,其實(shí)兩種做法都可得到正確答案,形成解法一和解法二。在這道例題中進(jìn)行發(fā)散思維的訓(xùn)練,(在上例中,能否既不使用余弦定理,也不使用正弦定理,求出∠A?)

啟發(fā)一:a視為B與C兩點(diǎn)間的距離,利用B、C的坐標(biāo)構(gòu)造含A的等式

啟發(fā)二:利用平移,用兩種方法求出C’點(diǎn)的坐標(biāo),構(gòu)造等式。使學(xué)生的思維活躍,漸入新的境界。每次啟發(fā),或是針對一般原則的提示,或是在學(xué)生出現(xiàn)思維盲點(diǎn)處點(diǎn)撥,或是學(xué)生“簡單一跳未摘到果子”時(shí)的及時(shí)提醒。

6.課堂小結(jié):

告訴學(xué)生余弦定理是任何三角形邊角之間存在的共同規(guī)律,勾股定理是余弦定理的特例。

7.布置作業(yè):書面作業(yè) 3道題

作業(yè)中注重余弦定理的應(yīng)用,重點(diǎn)培養(yǎng)解決問題的能力。

余弦定理教案(篇3)

一、說教材? 《余弦定理》是必修5第一章《解三角形》的第一節(jié)內(nèi)容,是解決有關(guān)斜三角形問題以及應(yīng)用問題的一個(gè)重要定理,它將三角形的邊和角有機(jī)地聯(lián)系起來,實(shí)現(xiàn)了“邊”與“角”的互化,從而使“三角”與“幾何”產(chǎn)生聯(lián)系,為求與三角形有關(guān)的量提供了理論依據(jù),同時(shí)也為判斷三角形形狀,證明三角形中的有關(guān)等式提供了重要依據(jù)。根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的`認(rèn)知結(jié)構(gòu),心理特征及原有知識水平,我將本課的教學(xué)目標(biāo)定為: ⒈知識與技能:掌握余弦定理的內(nèi)容及公式;能初步運(yùn)用余弦定理解決一些斜三角形; ⒉過程與方法:在探究學(xué)習(xí)的過程中,認(rèn)識到余弦定理可以解決某些與測量和幾何計(jì)算有關(guān)的實(shí)際問題,幫助學(xué)生提高運(yùn)用有關(guān)知識解決實(shí)際問題的能力。 ⒊情感、態(tài)度與價(jià)值觀:培養(yǎng)學(xué)生的探索精神和創(chuàng)新意識;在運(yùn)用余弦定理的過程中,讓學(xué)生逐步養(yǎng)成實(shí)事求是,扎實(shí)嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度,學(xué)習(xí)用數(shù)學(xué)的思維方式解決問題,認(rèn)識世界;通過本節(jié)的運(yùn)用實(shí)踐,體會數(shù)學(xué)的科學(xué)價(jià)值,應(yīng)用價(jià)值; ⒋本節(jié)課的教學(xué)重點(diǎn)是:運(yùn)用余弦定理探求任意三角形的邊角關(guān)系,解決與之有關(guān)的計(jì)算問題,運(yùn)用余弦定理解決一些與測量以及幾何計(jì)算有關(guān)的實(shí)際問題。 ⒌本節(jié)課的教學(xué)難點(diǎn)是:靈活運(yùn)用余弦定理解決相關(guān)的實(shí)際問題。 ⒍本節(jié)課的教學(xué)關(guān)鍵是:熟練掌握并靈活應(yīng)用余弦定理解決相關(guān)的實(shí)際問題。 下面為了講清重點(diǎn)、難點(diǎn),使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上談?wù)?/p>

余弦定理教案(篇4)

1.知識與技能:掌握余弦定理的兩種表示形式及證明余弦定理的向量方法,并會運(yùn)用余弦定理解決兩類基本的解三角形問題。

2.過程與方法:利用向量的數(shù)量積推出余弦定理及其推論,并通過實(shí)踐演算掌握運(yùn)用余弦定理解決兩類基本的解三角形問題,

3.情態(tài)與價(jià)值:培養(yǎng)學(xué)生在方程思想指導(dǎo)下處理解三角形問題的運(yùn)算能力;通過三角函數(shù)、余弦定理、向量的數(shù)量積等知識間的關(guān)系,來理解事物之間的普遍聯(lián)系與辯證統(tǒng)一。

教學(xué)難點(diǎn):勾股定理在余弦定理的發(fā)現(xiàn)和證明過程中的作用。

學(xué)法:首先研究把已知兩邊及其夾角判定三角形全等的方法進(jìn)行量化,也就是研究如何從已知的兩邊和它們的夾角計(jì)算出三角形的另一邊和兩個(gè)角的問題,利用向量的數(shù)量積比較容易地證明了余弦定理。從而利用余弦定理的第二種形式由已知三角形的三邊確定三角形的角

如圖1.1-4,在 ABC中,設(shè)BC=a,AC=b,AB=c,

聯(lián)系已經(jīng)學(xué)過的知識和方法,可用什么途徑來解決這個(gè)問題?

用正弦定理試求,發(fā)現(xiàn)因A、B均未知,所以較難求邊c。

由于涉及邊長問題,從而可以考慮用向量來研究這個(gè)問題。

余弦定理:三角形中任何一邊的平方等于其他兩邊的平方的和減去這兩邊與它們的夾角的余弦的積的兩倍。即

思考:這個(gè)式子中有幾個(gè)量?從方程的角度看已知其中三個(gè)量,可以求出第四個(gè)量,能否由三邊求出一角?(由學(xué)生推出)從余弦定理,又可得到以下推論:

[理解定理]從而知余弦定理及其推論的基本作用為:

①已知三角形的任意兩邊及它們的夾角就可以求出第三邊;

②已知三角形的三條邊就可以求出其它角。

思考:勾股定理指出了直角三角形中三邊平方之間的關(guān)系,余弦定理則指出了一般三角形中三邊平方之間的關(guān)系,如何看這兩個(gè)定理之間的關(guān)系?

由此可知余弦定理是勾股定理的推廣,勾股定理是余弦定理的特例。

= = 8 ∴

< ∴ < , 即 < < ∴

cos ;

[隨堂練習(xí)]第51頁練習(xí)第1、2、3題。

[課堂小結(jié)](1)余弦定理是任何三角形邊角之間存在的共同規(guī)律,

勾股定理是余弦定理的特例;

②.已知兩邊及它們的夾角,求第三邊。

1.知識與技能:掌握在已知三角形的兩邊及其中一邊的對角解三角形時(shí),有兩解或一解或無解等情形;三角形各種類型的判定方法;三角形面積定理的應(yīng)用。

2. 過程與方法:通過引導(dǎo)學(xué)生分析,解答三個(gè)典型例子,使學(xué)生學(xué)會綜合運(yùn)用正、余弦定理,三角函數(shù)公式及三角形有關(guān)性質(zhì)求解三角形問題。

3.情態(tài)與價(jià)值:通過正、余弦定理,在解三角形問題時(shí)溝通了三角形的有關(guān)性質(zhì)和三角函數(shù)的關(guān)系,反映了事物之間的必然聯(lián)系及一定條件下相互轉(zhuǎn)化的可能,從而從本質(zhì)上反映了事物之間的內(nèi)在聯(lián)系。

教學(xué)重點(diǎn):在已知三角形的兩邊及其中一邊的對角解三角形時(shí),有兩解或一解或無解等情形;三角形各種類型的判定方法;三角形面積定理的應(yīng)用。

教學(xué)難點(diǎn):正、余弦定理與三角形的有關(guān)性質(zhì)的綜合運(yùn)用。

學(xué)法:通過一些典型的實(shí)例來拓展關(guān)于解三角形的各種題型及其解決方法。

教學(xué)設(shè)想:[創(chuàng)設(shè)情景]:思考:在 ABC中,已知 , , ,解三角形。從此題的分析我們發(fā)現(xiàn),在已知三角形的兩邊及其中一邊的對角解三角形時(shí),在某些條件下會出現(xiàn)無解的情形。下面進(jìn)一步來研究這種情形下解三角形的問題。

1.當(dāng)A為鈍角或直角時(shí),必須 才能有且只有一解;否則無解。

2.當(dāng)A為銳角時(shí),如果 ≥ ,那么只有一解;

(2)若 ,則只有一解; (3)若 ,則無解。

評述:注意在已知三角形的兩邊及其中一邊的對角解三角形時(shí),只有當(dāng)A為銳角且 時(shí),有兩解;其它情況時(shí)則只有一解或無解。

[隨堂練習(xí)1]

(1)在 ABC中,已知 , , ,試判斷此三角形的解的情況。

(2)在 ABC中,若 , , ,則符合題意的b的值有_____個(gè)。

(3)在 ABC中, , , ,如果利用正弦定理解三角形有兩解,求x的取值范圍。 (答案:(1)有兩解;(2)0;(3) )

例2.在 ABC中,已知 , , ,判斷 ABC的類型。

[隨堂練習(xí)2]

(1)在 ABC中,已知 ,判斷 ABC的類型。

(2)已知 ABC滿足條件 ,判斷 ABC的類型。

[隨堂練習(xí)3]

(2)在 ABC中,其三邊分別為a、b、c,三角形的面積 ,求角C

[課堂小結(jié)](1)在已知三角形的兩邊及其中一邊的對角解三角形時(shí),

有兩解或一解或無解等情形;

(2)三角形各種類型的判定方法;

(3)三角形面積定理的應(yīng)用。

(五)課時(shí)作業(yè):

(1)在 ABC中,已知 , , ,試判斷此三角形的解的情況。

(2)設(shè)x、x+1、x+2是鈍角三角形的三邊長,求實(shí)數(shù)x的取值范圍。

了解雙曲線的參數(shù)方程的建立,熟悉拋物線參數(shù)方程的形式,會運(yùn)用參數(shù)方程解決問題,進(jìn)一步加深對參數(shù)方程的理解。

(1) 表示頂點(diǎn)在 ,

焦點(diǎn)在 的拋物線;

(2) 表示頂點(diǎn)在 ,

1、類比橢圓參數(shù)方程的建立,若給出一個(gè)三角公式 ,你能寫出雙曲線

的參數(shù)方程嗎?

2、如圖,設(shè)拋物線的普通方程為 , 為拋物線上除頂點(diǎn)外的任一點(diǎn),以

你能否根據(jù)本題的解題過程寫出拋物線的四種不同形式方程對應(yīng)的參數(shù)方程?并說出參數(shù)表示的意義。

例1.如圖, 是直角坐標(biāo)原點(diǎn),A ,B是拋物線 上異于頂點(diǎn)的兩動點(diǎn),且 ,求點(diǎn)A、B在什么位置時(shí), 的面積最小?最小值是多少?

1.求過P(0,1)到雙曲線 的最小距離.

1.本節(jié)學(xué)習(xí)了哪些內(nèi)容?

答:1.了解雙曲線的'參數(shù)方程的建立,熟悉拋物線參數(shù)方程的形式.

2.會運(yùn)用參數(shù)方程解決問題,進(jìn)一步加深對參數(shù)方程的理解。

A、 B、

C、 D、

3.設(shè)P為等軸雙曲線 上的一點(diǎn), 為兩個(gè)焦點(diǎn),證明 .

4、經(jīng)過拋物線 的頂點(diǎn)O任作兩條互相垂直的線段OA和OB,以直線OA的斜率k為參數(shù),求線段AB的中點(diǎn)的軌跡的參數(shù)方程。

例1.甲、乙兩人進(jìn)行五局三勝制的象棋比賽,若甲每盤的勝率為 ,乙每盤的勝率為 (和棋不算),求:

(1)比賽以甲比乙為3比0勝出的概率;

(2)比賽以甲比乙為3比2勝出的概率。

例2.某地區(qū)為下崗免費(fèi)提供財(cái)會和計(jì)算機(jī)培訓(xùn),以提高下崗人員的再就業(yè)能力,每名下崗人員可以選擇參加一項(xiàng)培訓(xùn)、參加兩項(xiàng)培訓(xùn)或不參加培訓(xùn),已知參加過財(cái)會培訓(xùn)的有60%,參加過計(jì)算機(jī)培訓(xùn)的有75%,假設(shè)每個(gè)人對培訓(xùn)項(xiàng)目的選擇是相互獨(dú)立的,且各人的選擇相互之間沒有影響。

(1)任選1名下崗人員,求該人參加過培訓(xùn)的概率;

(2)任選3名下崗人員,記X為3人中參加過培訓(xùn)的人數(shù),求X的分布列。

例3.A,B是治療同一種疾病的兩種藥,用若干試驗(yàn)組進(jìn)行對比試驗(yàn),每個(gè)試驗(yàn)組由4只小白鼠組成,其中2只服用A,另2只服用B,然后觀察療效。若在一個(gè)試驗(yàn)組中,服用A有效的小白鼠的只數(shù)比服用B有效的多,就稱該試驗(yàn)組為甲類組,設(shè)每只小白鼠服用A有效的概率為 ,服用B有效的概率為 。

(1)求一個(gè)試驗(yàn)組為甲類組的概率;

(2)觀察3個(gè)試驗(yàn)組,用X表示這3個(gè)試驗(yàn)組中甲類組的個(gè)數(shù),求X的分布列。

1.某種小麥在田間出現(xiàn)自然變異植株的概率為0.0045,今調(diào)查該種小麥100株,試計(jì)算兩株和兩株以上變異植株的概率。

2.某批產(chǎn)品中有20%的不含格品,進(jìn)行重復(fù)抽樣檢查,共取5個(gè)樣品,其中不合格品數(shù)為X,試確定X的概率分布。

(1)人中恰有2人引起不良反應(yīng)的概率;

(2)2000人中多于1人引起不良反應(yīng)的概率;

1.接種某疫苗后,出現(xiàn)發(fā)熱反應(yīng)的概率為0.80,現(xiàn)有5人接種該疫苗,至少有3人出現(xiàn)發(fā)熱反應(yīng)的概率為(精確為0.0001)_________________。

2.一射擊運(yùn)動員射擊時(shí),擊中10環(huán)的概率為0.7,擊中9環(huán)的概率0.3,則該運(yùn)動員射擊3次所得環(huán)數(shù)之和不少于29環(huán)的概率為_______________。

3.某射手射擊1次,擊中目標(biāo)的概率是0.9,他連續(xù)射擊4次,且各次射擊是否擊中目標(biāo)相互之間沒有影響,有下列結(jié)論:①他第3次擊中目標(biāo)的概率是0.9;②他恰好擊中目標(biāo)3次的概率是0.93×0.1;③他至少擊中目標(biāo)1次的概率是1-0.14。

其中正確結(jié)論的序號是_______________。(寫出所有正確結(jié)論的序號)

4.某產(chǎn)品10,其中3次品,現(xiàn)依次從中隨機(jī)抽取3(不放回),則3中恰有2次品的概率為_____________。

5.某射手每次射擊擊中目標(biāo)的概率都是0.8,現(xiàn)在連續(xù)射擊4次,求擊中目標(biāo)的次數(shù)X的概率分布。

6.某安全生產(chǎn)監(jiān)督部門對6家小型煤礦進(jìn)行安全檢查(簡稱安檢),若安檢不合格,則必須進(jìn)行整改,若整改后經(jīng)復(fù)查仍不合格,則強(qiáng)行關(guān)閉,設(shè)每家煤礦安檢是否合格是相互獨(dú)立的,每家煤礦整改前安檢合格的概率是0.6,整改后安檢合格的概率是0.9,計(jì)算:

(1)恰好有三家煤礦必須整改的概率;

7.9粒種子分種在甲、乙、丙3個(gè)坑內(nèi),每坑3粒,每粒種子發(fā)芽的概率為0.5,若一個(gè)坑內(nèi)至少有1粒種子發(fā)芽,則這個(gè)坑不需要補(bǔ)種;若一個(gè)坑內(nèi)的種子都沒發(fā)芽,則這個(gè)坑需要補(bǔ)種。

(1)求甲坑不需要補(bǔ)種的概率;

(2)求3個(gè)坑中需要補(bǔ)種的坑數(shù)X的分布列;

1、知識與技能:能夠運(yùn)用正弦定理、余弦定理等知識和方法進(jìn)一步解決有關(guān)三角形的問題, 掌握三角形的面積公式的簡單推導(dǎo)和應(yīng)用

2、過程與方法:本節(jié)課補(bǔ)充了三角形新的面積公式,巧妙設(shè)疑,引導(dǎo)學(xué)生證明,同時(shí)總結(jié)出該公式的特點(diǎn),循序漸進(jìn)地具體運(yùn)用于相關(guān)的題型。另外本節(jié)課的證明題體現(xiàn)了前面所學(xué)知識的生動運(yùn)用,教師要放手讓學(xué)生摸索,使學(xué)生在具體的論證中靈活把握正弦定理和余弦定理的特點(diǎn),能不拘一格,一題多解。只要學(xué)生自行掌握了兩定理的特點(diǎn),就能很快開闊思維,有利地進(jìn)一步突破難點(diǎn)。

3、情感態(tài)度與價(jià)值觀:讓學(xué)生進(jìn)一步鞏固所學(xué)的知識,加深對所學(xué)定理的理解,提高創(chuàng)新能力;進(jìn)一步培養(yǎng)學(xué)生研究和發(fā)現(xiàn)能力,讓學(xué)生在探究中體驗(yàn)愉悅的成功體驗(yàn)

二、重點(diǎn):推導(dǎo)三角形的面積公式并解決簡單的相關(guān)題目。

教學(xué)難點(diǎn):利用正弦定理、余弦定理來求證簡單的證明題。

[創(chuàng)設(shè)情境]

師:以前我們就已經(jīng)接觸過了三角形的面積公式,今天我們來學(xué)習(xí)它的另一個(gè)表達(dá)公式。在

ABC中,邊BC、CA、AB上的高分別記為h 、h 、h ,那么它們?nèi)绾斡靡阎吅徒潜硎荆?/p>

生:h =bsinC=csinB,h =csinA=asinC,h =asinB=bsinaA

師:根據(jù)以前學(xué)過的三角形面積公式S= ah,應(yīng)用以上求出的高的公式如h =bsinC代入,可以推導(dǎo)出下面的三角形面積公式,S= absinC,大家能推出其它的幾個(gè)公式嗎?

師:除了知道某條邊和該邊上的高可求出三角形的面積外,知道哪些條件也可求出三角形的面積呢?

[范例講解]

例1、在 ABC中,根據(jù)下列條件,求三角形的面積S(精確到0.1cm )(1)已知a=14.8cm,c=23.5cm,B=148.5 ;(2)已知B=62.7 ,C=65.8 ,b=3.16cm;(3)已知三邊的長分別為a=41.4cm,b=27.3cm,c=38.7cm

分析:這是一道在不同已知條件下求三角形的面積的問題,與解三角形問題有密切的關(guān)系,我們可以應(yīng)用解三角形面積的知識,觀察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面積。

解:(1)應(yīng)用S= acsinB,得 S= 14.8 23.5 sin148.5 ≈90.9(cm )

(2)根據(jù)正弦定理, = ,c = ,S = bcsinA = b

A = 180 -(B + C)= 180 -(62.7 + 65.8 )=51.5

例2、如圖,在某市進(jìn)行城市環(huán)境建設(shè)中,要把一個(gè)三角形的區(qū)域改造成室內(nèi)公園,經(jīng)過測量得到這個(gè)三角形區(qū)域的三條邊長分別為68m,88m,127m,這個(gè)區(qū)域的面積是多少?(精確到0.1cm )?

生:本題可轉(zhuǎn)化為已知三角形的三邊,求角的問題,再利用三角形的面積公式求解。

由學(xué)生解答,老師巡視并對學(xué)生解答進(jìn)行講評小結(jié)。

解:設(shè)a=68m,b=88m,c=127m,根據(jù)余弦定理的推論,cosB= = ≈0.7532,sinB= 0.6578應(yīng)用S= acsinB S ≈ 68 127 0.6578≈2840.38(m )

例3、在 ABC中,求證:(1) (2) + + =2(bccosA+cacosB+abcosC)

分析:這是一道關(guān)于三角形邊角關(guān)系恒等式的證明問題,觀察式子左右兩邊的特點(diǎn),聯(lián)想到用正弦定理來證明

證明:(1)根據(jù)正弦定理,可設(shè) = = = k,顯然 k 0,所以

(2)根據(jù)余弦定理的推論,

=(b +c - a )+(c +a -b )+(a +b -c )=a +b +c =左邊

變式練習(xí)1:已知在 ABC中, B=30 ,b=6,c=6 ,求a及 ABC的面積S

提示:解有關(guān)已知兩邊和其中一邊對角的問題,注重分情況討論解的個(gè)數(shù)。

Ⅳ.課時(shí)小結(jié):利用正弦定理或余弦定理將已知條件轉(zhuǎn)化為只含邊的式子或只含角的三角函數(shù)式,然后化簡并考察邊或角的關(guān)系,從而確定三角形的形狀。特別是有些條件既可用正弦定理也可用余弦定理甚至可以兩者混用。

2.能根據(jù)等比數(shù)列的通項(xiàng)公式,進(jìn)行簡單的應(yīng)用。

3,3,3,3,……

2.相比與等差數(shù)列,以上數(shù)列有什么特點(diǎn)?

等比數(shù)列的定義:

3.判斷下列數(shù)列是否為等比數(shù)列,若是,請指出公比 的值。

4.求出下列等比數(shù)列的未知項(xiàng)。

(1) ; (2) 。

5.已知 是公比為 的等比數(shù)列,新數(shù)列 也是等比數(shù)列嗎?如果是,公比是多少?

6.已知無窮等比數(shù)列 的首項(xiàng)為 ,公比為 。

(1)依次取出數(shù)列 中的所有奇數(shù)項(xiàng),組成一個(gè)新數(shù)列,這個(gè)數(shù)列還是等比數(shù)列嗎?如果是,它的首項(xiàng)和公比是多少?

(2)數(shù)列 (其中常數(shù) )是等比數(shù)列嗎?如果是,它的首項(xiàng)和公比是多少?

例1.在等比數(shù)列 中,

(1)已知 ,求 ; (2)已知 ,求 。

例2.在243和3中間插入3個(gè)數(shù),使這5個(gè)數(shù)成等比數(shù)列,求這三個(gè)數(shù)。

例3.已知等比數(shù)列 的通項(xiàng)公式為 ,(1)求首項(xiàng) 和公比 ;

(2)問表示這個(gè)數(shù)列的點(diǎn) 在什么函數(shù)的圖像上?

定義從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都是同一個(gè)常數(shù)。

課后作業(yè):

1. 成等比數(shù)列,則 = 。

2.在等比數(shù)列 中,

(1)已知 ,則 = , = 。

(2)已知 ,則 = 。

(3)已知 ,則 = 。

3.設(shè) 是等比數(shù)列,判斷下列命題是否正確?

4.設(shè) 成等比數(shù)列,公比 =2,則 = 。

5.在G.P 中,(1)已知 ,求 ;(2)已知 ,求 。

6.在兩個(gè)同號的非零實(shí)數(shù) 和 之間插入2個(gè)數(shù),使它們成等比數(shù)列,試用 表示這個(gè)等比數(shù)列的公比。

7.已知公差不為0的等差數(shù)列的第2,3,6項(xiàng),依次構(gòu)成一個(gè)等比數(shù)列,求該等比數(shù)列的通項(xiàng)。

8.已知 五個(gè)數(shù)構(gòu)成等比數(shù)列,求 的值。

9.在等比數(shù)列 中, ,求 。

10.三個(gè)正數(shù)成等差數(shù)列,它們的和為15,如果它們分別加上1,3,9就成等比數(shù)列,求這三個(gè)數(shù)。

11.已知等比數(shù)列 ,若 ,求公比 。

12.已知 ,點(diǎn) 在函數(shù) 的圖像上,( ),設(shè) ,求證: 是等比數(shù)列。

重點(diǎn)難點(diǎn)掌握平面向量的坐標(biāo)表示及坐標(biāo)運(yùn)算;平面向量坐標(biāo)表示的理解

1、在直角坐標(biāo)平面內(nèi)一點(diǎn) 是如何表示的? 。

2、以原點(diǎn) 為起點(diǎn), 為終點(diǎn),能不能也用坐標(biāo)表示 呢?例:

3、平面向量的坐標(biāo)表示。

例1、如圖,已知 是坐標(biāo)原點(diǎn),點(diǎn) 在第一象限, , ,求向量 的坐標(biāo)。

例2、如圖,已知 , , , ,求向量 , , , 的坐標(biāo)。

例3、用向量的坐標(biāo)運(yùn)算解:如圖,質(zhì)量為 的物體靜止的放在斜面上,斜面與水平面的夾角為 ,求斜面對物體的摩擦力 。

例4、已知 , , 是直線 上一點(diǎn),且 ,求點(diǎn) 的坐標(biāo)。

、 、 、 或 、

2、已知 是坐標(biāo)原點(diǎn),點(diǎn) 在第二象限, , ,求向量 的坐標(biāo)。

3、已知四邊形 的頂點(diǎn)分別為 , , , ,求向量 , 的坐標(biāo),并證明四邊形 是平行四邊形。

4、已知作用在原點(diǎn)的三個(gè)力 , , ,求它們的合力的坐標(biāo)。

5、已知 是坐標(biāo)原點(diǎn), , ,且 ,求 的坐標(biāo)。

2、已知 ,終點(diǎn)坐標(biāo)是 ,則起點(diǎn)坐標(biāo)是 。

3、已知 , ,向量 與 相等.則 。

4、已知點(diǎn) , , ,則 。

5、已知 的終點(diǎn)在以 , 為端點(diǎn)的線段上,則 的最大值和最小值分別等于 。

6、已知平行四邊形 的三個(gè)頂點(diǎn)坐標(biāo)分別為 , , ,求第四個(gè)頂點(diǎn) 的坐標(biāo)。

7、已知向量 , ,點(diǎn) 為坐標(biāo)原點(diǎn),若向量 , ,求向量 的坐標(biāo)。

8、已知點(diǎn) , 及 , ,求點(diǎn) , 和 的坐標(biāo)。

9、已知點(diǎn) , , ,若點(diǎn) 滿足 ,

當(dāng) 為何值時(shí):(1)點(diǎn) 在直線 上? (2)點(diǎn) 在第四象限內(nèi)?

1.定理1. 如果a,b ,那么 ,(當(dāng)且僅當(dāng)_______時(shí),等號成立).

2.定理2(基本不等式):如果a,b>0,那么______________(當(dāng)且僅當(dāng)_______時(shí),等號成立).

稱_______為a,b的算術(shù)平均數(shù),_____為a,b的幾何平均數(shù)。基本不等式又稱為________.

3. 基本不等式的幾何意義是:_________不小于_________. 如圖

4.利用基本不等式求最大(?。┲禃r(shí),要注意的問題:(一“正”;二“定”;三“相等”)

(2)求積的最大值時(shí),應(yīng)看和是否為定值;求和的最小值時(shí),應(yīng)看積是否為定值,;

簡記為:和定積最_____,積定和最______.

(3)只有等號能夠成立時(shí),才有最值。

(二)例題分析:

例1.(陜西)設(shè)x、y為正數(shù),則有(x+y)(1x+4y)的最小值為( )

例2.函數(shù) 的值域是_________________________.

例3(江西、陜西、天津,全國、理) 設(shè)計(jì)一幅宣傳畫,要求畫面面積為4840cm2,畫面的寬與高的比為 ,畫面的上、下各有8cm空白,左、右各有5cm空白,怎樣確定畫面的高與寬尺寸,能使宣傳畫所用紙張的面積最?。?/p>

2.(湖南理)設(shè)a>0, b>0,則以下不等式中不恒成立的是( )

(A) ≥4 (B) ≥

(C) ≥ (D) ≥

3.(2001春招北京、內(nèi)蒙、安徽、理)若 為實(shí)數(shù),且 ,則 的最小值是( )

6. 已知兩個(gè)正實(shí)數(shù) 滿足關(guān)系式 , 則 的最大值是_____________.

7.若 且 則 中最小的一個(gè)是__________.

8.(2005北京春招、理)經(jīng)過長期觀測得到:在交通繁忙的時(shí)段內(nèi),某公路段汽車的車流量 (千輛/小時(shí))與汽車的平均速度 (千米/小時(shí))之間的函數(shù)關(guān)系為: 。

(1)在該時(shí)段內(nèi),當(dāng)汽車的平均速度 為多少時(shí),車流量最大?最大車流量為多少?(精確到 千輛/小時(shí))

(2)若要求在該時(shí)段內(nèi)車流量超過10千輛/小時(shí),則汽車站的平均速度應(yīng)在什么范圍內(nèi)?

(四)拓展訓(xùn)練:

1.(2000全國、江西、天津、廣東)若 ,P= ,Q= ,R= ,則( )

2.若正數(shù)a、b滿足ab=a+b+3,分別求ab與a+b的取值范圍。

例3解:設(shè)畫面高為x cm,寬為λx cm,則λ x2 = 4840.

設(shè)紙張面積為S,有S = (x+16) (λ x+10)= λ x2+(16λ+10) x+160,

將 代入上式,得 .

當(dāng) 時(shí),即 時(shí),S取得最小值.

答:畫面高為88cm,寬為55cm時(shí),能使所用紙張面積最小.

(三)基礎(chǔ)訓(xùn)練: 1. B; 2. B; 3. B; 4. B 5.B; 6. 2 ; 7.

整理得v2-89v+16000)解得t≥3, 即 ,所以ab≥9,a+b=ab-3≥6.法二:令 ,則由ab=a+b+3可知a+b+3 = ,得 ,(x>0)整理得 ,又x>0,解得x≥6,即a+b≥6,所以ab=a+b+3≥9.

余弦定理教案(篇5)

《余弦定理》說課稿

一.教材分析

1.地位及作用 “余弦定理”是人教A版數(shù)學(xué)必修5主要內(nèi)容之一,是解決有關(guān)斜三角形問題的兩個(gè)重要定理之一,也是初中“勾股定理”內(nèi)容的直接延拓,它是三角函數(shù)一般知識和平面向量知識在三角形中的具體運(yùn)用,是解可轉(zhuǎn)化為三角形計(jì)算問題的其它數(shù)學(xué)問題及生產(chǎn)、生活實(shí)際問題的重要工具具有廣泛的應(yīng)用價(jià)值,起到承上啟下的作用。

2. 課時(shí)安排說明

參照教學(xué)大綱與課程標(biāo)準(zhǔn),以及學(xué)生的現(xiàn)實(shí)情況,本節(jié)內(nèi)容安排兩課時(shí),本次說課內(nèi)容為第一課時(shí)。3.教學(xué)重、難點(diǎn)

重點(diǎn):余弦定理的證明過程和定理的簡單應(yīng)用。

難點(diǎn):利用向量的數(shù)量積證余弦定理的思路。二.學(xué)情分析

本課之前,學(xué)生已經(jīng)學(xué)習(xí)了三角函數(shù)、向量基本知識和正弦定理有關(guān)內(nèi)容,對于三角形中的邊角關(guān)系有了較進(jìn)一步的認(rèn)識。在此基礎(chǔ)上利用向量方法探求余弦定理,學(xué)生已有一定的學(xué)習(xí)基礎(chǔ)和學(xué)習(xí)興趣。總體上學(xué)生應(yīng)用數(shù)學(xué)知識的意識不強(qiáng),創(chuàng)造力較弱,看待與分析問題不深入,知識的系統(tǒng)性不完善,使得學(xué)生在余弦定理推導(dǎo)方法的探求上有一定的難度.三. 目標(biāo)分析

根據(jù)新課程標(biāo)準(zhǔn)突出學(xué)生綜合素質(zhì)培養(yǎng)的特點(diǎn),確定了本節(jié)課三位一體的教學(xué)目標(biāo):

知識目標(biāo):能推導(dǎo)余弦定理及其推論,能運(yùn)用余弦定理解已知“邊,角,邊”和“邊,邊,邊”兩類三角形。

能力目標(biāo):培養(yǎng)學(xué)生知識的遷移能力;歸納總結(jié)的能力;運(yùn)用所學(xué)知識解決實(shí)際問題的能力。情感目標(biāo):從實(shí)際問題出發(fā),體驗(yàn)數(shù)學(xué)在實(shí)際生活中的運(yùn)用,讓學(xué)生感受數(shù)學(xué)的美,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。通過主動探索,合作交流,感受探索的樂趣和成功的體驗(yàn)。養(yǎng)成實(shí)事求是的科學(xué)態(tài)度和契而不舍的鉆研精神.四. 教學(xué)方法

1.教法分析:

數(shù)學(xué)課堂上首先要重視知識的發(fā)生過程,既能展現(xiàn)知識的獲取,又能突出解決問題的思維。在本節(jié)教學(xué)中,我將以課堂教學(xué)的組織者、引導(dǎo)者、合作者的身份,組織學(xué)生探究、歸納、推導(dǎo),引導(dǎo)學(xué)生逐個(gè)突破難點(diǎn),使學(xué)生在各種數(shù)學(xué)活動中掌握各種數(shù)學(xué)基本技能。

2.學(xué)法分析:

教師的“教”不僅要讓學(xué)生“學(xué)會知識”,更重要的是要讓學(xué)生“會學(xué)知識”,而正確的學(xué)法指導(dǎo)是培養(yǎng)學(xué)生這種能力的關(guān)鍵。本節(jié)教學(xué)中通過創(chuàng)設(shè)情境,充分調(diào)動學(xué)生已有的學(xué)習(xí)經(jīng)驗(yàn),讓學(xué)生經(jīng)歷“現(xiàn)實(shí)問題轉(zhuǎn)化為數(shù)學(xué)問題”的過程,并通過實(shí)際操作,使剛產(chǎn)生的數(shù)學(xué)知識得到完善,提高了學(xué)生動手動腦的能力.五. 教學(xué)過程

教學(xué)環(huán)節(jié):溫故知新—探究新知—鞏固提高—反思體驗(yàn)。

1.在第一環(huán)節(jié)中,我提出問題:正弦定理及正弦定理解決的解三角形問題。并引導(dǎo)學(xué)生思考正弦定理沒有解決的解三角形問題。

設(shè)計(jì)意圖:溫故舊知,為學(xué)習(xí)新知識,做準(zhǔn)備。

2.在第二個(gè)環(huán)節(jié)中:通過鐵路規(guī)劃的實(shí)際問題,建立數(shù)學(xué)模型.設(shè)計(jì)意圖:通過實(shí)際問題,引發(fā)學(xué)生思考,激發(fā)學(xué)生的學(xué)習(xí)興趣,在給出技術(shù)人員的方法后,提出問題,激起學(xué)生求知欲.然后我將全班同學(xué)分為三個(gè)隊(duì),以小組合作的形式分別利用平面幾何法,向量法,解析法探究余弦定理.設(shè)計(jì)意圖: 從各個(gè)不同的方向探索得到余弦定理,發(fā)散學(xué)生的思維;讓全班同學(xué)參與其中,成為學(xué)習(xí)的主人,共同感受知識的產(chǎn)生過程,體驗(yàn)成功的快樂.通過學(xué)生的自主學(xué)習(xí),合作交流,得出余弦定理公式,歸納總結(jié)定理特點(diǎn),樹立知三求一的思想.3.在第三個(gè)環(huán)節(jié)中,首先帶領(lǐng)學(xué)生解決之前的實(shí)際問題,樹立學(xué)生信心,使學(xué)生有一種躍躍欲試的感覺.然后設(shè)置了三道例題: 例1:已知兩邊及夾角,鞏固新知

例2:已知三邊求最大角;由學(xué)生思考得出余弦定理推論,帶動學(xué)生思考,觀察推論,再次明確知三求一的思想;例3:已知兩邊及一邊對角;引導(dǎo)學(xué)生發(fā)出此類問題可以通過正,余弦定理兩種方法求解.這樣設(shè)計(jì)由淺入深,層次分明,符合學(xué)生的認(rèn)識規(guī)律,最后加以總結(jié).接下來通過一道口答題,使學(xué)生回憶起勾股定理可以解直角三角形,引發(fā)學(xué)生思考勾股定理與余弦定理的關(guān)系.設(shè)計(jì)意圖:加深學(xué)生對余弦定理的認(rèn)識,強(qiáng)化特殊與一般的對立統(tǒng)一關(guān)系。通過知識的外延拓展學(xué)生思維,培養(yǎng)學(xué)生創(chuàng)造力。

通過搶答環(huán)節(jié),調(diào)動學(xué)生的積極性,通過課堂練習(xí)鞏固所學(xué)知識,加強(qiáng)學(xué)生數(shù)學(xué)知識應(yīng)用能力的培養(yǎng).4.在最后一個(gè)環(huán)節(jié)中,通過知識樹的形式總結(jié)本節(jié)課內(nèi)容,使學(xué)生對知識有一個(gè)系統(tǒng)的回顧與認(rèn)識,培養(yǎng)學(xué)生歸納概括能力。六.教學(xué)理念

學(xué)習(xí)的主體是學(xué)生,要因材施教對癥下藥,具體情況具體分析,不能照搬照抄。教無定法,關(guān)鍵是學(xué)生能不能有所思,有所得。新課程的數(shù)學(xué)提倡學(xué)生自主探索,合作交流,所以在本節(jié)課的教學(xué)中,我始終本著“教師是課堂教學(xué)的組織者、引導(dǎo)者、合作者”的原則,讓學(xué)生通過分析、觀察、歸納、推理等過程建構(gòu)新知識,并初步學(xué)會從數(shù)學(xué)的角度去觀察事物和思考問題。同時(shí),以學(xué)生作為教學(xué)主體,設(shè)計(jì)可操作的數(shù)學(xué)活動,使每個(gè)同學(xué)都參與其中,從而帶動和提高全體學(xué)生的學(xué)習(xí)積極性和主動性。師生共同體驗(yàn)發(fā)現(xiàn)探索的快樂,感受合作交流的愉悅。同時(shí)要求教師從知識的傳授者向課堂的設(shè)計(jì)者、組織者、引導(dǎo)者、合作者轉(zhuǎn)化,從課堂的執(zhí)行者向?qū)嵤┱摺⑻骄块_發(fā)者轉(zhuǎn)化。本課盡力追求新課程要求,利用師生的互動合作,提高學(xué)生的數(shù)學(xué)思維能力,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,深刻地體會數(shù)學(xué)思想方法及數(shù)學(xué)的應(yīng)用,激發(fā)學(xué)生探究數(shù)學(xué)、應(yīng)用數(shù)學(xué)知識的潛能.昨天已經(jīng)成為歷史,今天我們在抒寫著歷史,愿我們的優(yōu)質(zhì)課競賽成為豐富盟校教學(xué),提升成績的一個(gè)契機(jī),通鋼一中數(shù)學(xué)教師姚艷玲愿在這一活動中為此貢獻(xiàn)自己的一份力量!謝謝大家!

余弦定理教案(篇6)

正弦定理是使學(xué)生在已有知識的基礎(chǔ)上,通過對三角形邊角關(guān)系的研究,發(fā)現(xiàn)并掌握三角形中的邊長與角度之間的數(shù)量關(guān)系,提出兩個(gè)實(shí)際問題,并指出解決問題的關(guān)鍵在于研究三角形中的邊、角關(guān)系,從而引導(dǎo)學(xué)生產(chǎn)生探索愿望,激發(fā)學(xué)生學(xué)習(xí)的興趣。在教學(xué)過程中,要引導(dǎo)學(xué)生自主探究三角形的邊角關(guān)系,先由特殊情況發(fā)現(xiàn)結(jié)論,再對一般三角形進(jìn)行推導(dǎo)證明,并引導(dǎo)學(xué)生分析正弦定理可以解決兩類關(guān)于解三角形的'問題:

(1)已知兩角和一邊,解三角形:

(2)已知兩邊和其中一邊的對角,解三角形。

本節(jié)授課對象是高一學(xué)生,是在學(xué)生學(xué)習(xí)了必修④基本初等函數(shù)Ⅱ和三角恒等變換的基礎(chǔ)上,由實(shí)際問題出發(fā)探索研究三角形邊角關(guān)系,得出正弦定理。高一學(xué)生對生產(chǎn)生活問題比較感興趣,由實(shí)際問題出發(fā)可以激起學(xué)生的學(xué)習(xí)興趣,使學(xué)生產(chǎn)生探索研究的愿望。

根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,立足學(xué)生的認(rèn)知水平,制定如下教學(xué)目標(biāo)和重、難點(diǎn)。

1.知識與技能:

(1)引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,探索證明正弦定理的方法;

(2)簡單運(yùn)用正弦定理解三角形、初步解決某些與測量和幾何計(jì)算有關(guān)的實(shí)際問題

2.過程與方法:

通過對定理的探究,培養(yǎng)學(xué)生發(fā)現(xiàn)數(shù)學(xué)規(guī)律的思維方法與能力;通過對定理的證明和應(yīng)用,培養(yǎng)學(xué)生獨(dú)立解決問題的能力和體會分類討論和數(shù)形結(jié)合的思想方法.

3.情感、態(tài)度與價(jià)值觀:

(1)通過對三角形邊角關(guān)系的探究學(xué)習(xí),經(jīng)歷數(shù)學(xué)探究活動的過程,體會由特殊到一般再由一般到特殊的認(rèn)識事物規(guī)律,培養(yǎng)探索精神和創(chuàng)新意識;

(2)通過本節(jié)學(xué)習(xí)和運(yùn)用實(shí)踐,體會數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值,學(xué)習(xí)用數(shù)學(xué)的思維方式解決問題、認(rèn)識世界,進(jìn)而領(lǐng)會數(shù)學(xué)的人文價(jià)值、美學(xué)價(jià)值,不斷提高自身的文化修養(yǎng).

教學(xué)難點(diǎn):1.正弦定理的推導(dǎo). 2.正弦定理的運(yùn)用.

學(xué)法:開展“動腦想、嚴(yán)格證、多交流、勤設(shè)問”的研討式學(xué)習(xí)方法,逐漸培 養(yǎng)學(xué)生“會觀察”、 “會類比”、“會分析”、“會論證”的能力,

整堂課圍繞“一切為了學(xué)生發(fā)展”的教學(xué)原則,突出:①動——師生互動、共同探索;②導(dǎo)——教師指導(dǎo)、循序漸進(jìn)。

(1)新課引入——提出問題, 激發(fā)學(xué)生的求知欲。

(2)掌握正弦定理的推導(dǎo)證明——分類討論,數(shù)形結(jié)合,動腦思考,由特殊到一般,組織學(xué)生自主探索,獲得正弦定理及證明過程。

(3)例題處理——始終從問題出發(fā),層層設(shè)疑,讓他們在探索中自得知識。

(4)鞏固練習(xí)——深化對正弦定理的理解,并結(jié)合遼寧數(shù)學(xué)高考理科17題文科18題,鞏固新知。

余弦定理教案(篇7)

如右圖,在ABC中,三內(nèi)角A、B、C所對的邊分別是a、b、c . 以A為原點(diǎn),AC所在的直線為x軸建立直角坐標(biāo)系,于是C點(diǎn)坐標(biāo)是(b,0),由三角函數(shù)的定義得B點(diǎn)坐標(biāo)是(ccosA,csinA) . ∴CB = (ccosA-b,csinA).

現(xiàn)將CB平移到起點(diǎn)為原點(diǎn)A,則AD = CB .

而 |AD| = |CB| = a ,∠DAC = π-∠BCA = π-C ,

根據(jù)三角函數(shù)的定義知D點(diǎn)坐標(biāo)是 (acos(π-C),asin(π-C))

即 D點(diǎn)坐標(biāo)是(-acosC,asinC),

∴ (-acosC,asinC) = (ccosA-b,csinA)

由①得 asinA = csinC ,同理可證 asinA = bsinB ,

∴ asinA = bsinB = csinC .

由②得 acosC = b-ccosA ,平方得:

a2cos2C = b2-2bccosA + c2cos2A ,

即 a2-a2sin2C = b2-2bccosA + c2-c2sin2A .

∴ a2 = b2 + c2-2bccosA .

同理可證 b2 = a2 + c2-2accosB ,

c2 = a2 + b2-2abcosC .

正、余弦定理是解三角形強(qiáng)有力的工具,關(guān)于這兩個(gè)定理有好幾種不同的證明方法.人教A版教材《數(shù)學(xué)》(必修5)是用向量的數(shù)量積給出證明的,如是在證明正弦定理時(shí)用到作輔助單位向量并對向量的等式作同一向量的數(shù)量積,這種構(gòu)思方法過于獨(dú)特,不易被初學(xué)者接受.本文試圖通過運(yùn)用多種方法證明正、余弦定理從而進(jìn)一步理解正、余弦定理,進(jìn)一步體會向量的巧妙應(yīng)用和數(shù)學(xué)中“數(shù)”與“形”的完美結(jié)合.

c2=a2+b2-2abcos C,

b2=a2+c2-2accos B,

a2=b2+c2-2bccos A.

AD=bsin∠BCA,

BE=csin∠CAB,

CF=asin∠ABC。

=casin∠ABC.

AD=bsin∠BCA=csin∠ABC,

BE=asin∠BCA=csin∠CAB。

的直徑,則∠DAC=90°,∠ABC=∠ADC。

因?yàn)锳B=AC+CB,

所以jAB=j(AC+CB)=jAC+jCB.

因?yàn)閖AC=0,

jCB=| j ||CB|cos(90°-∠C)=asinC,

jAB=| j ||AB|cos(90°-∠A)=csinA .

過A作 ,

法一:證明:建立如下圖所示的直角坐標(biāo)系,則A=(0,0)、B=(c,0),又由任意角三角函數(shù)的定義可得:C=(bcos A,bsin A),以AB、BC為鄰邊作平行四邊形ABCC′,則∠BAC′=π-∠B,

∴C′(acos(π-B),asin(π-B))=C′(-acos B,asin B).

根據(jù)向量的運(yùn)算:

=(-acos B,asin B),

= - =(bcos A-c,bsin A),

(2)由 =(b-cos A-c)2+(bsin A)2=b2+c2-2bccos A,

又| |=a,

∴a2=b2+c2-2bccos A.

同理:

c2=a2+b2-2abcos C;

b2=a2+c2-2accos B.

,設(shè) 軸、 軸方向上的單位向量分別為 、 ,將上式的兩邊分別與 、 作數(shù)量積,可知

化簡得b2-a2-c2=-2accos B.

這里(1)為射影定理,(2)為正弦定理,(4)為余弦定理.

余弦定理教案(篇8)

教學(xué)設(shè)計(jì)

一、內(nèi)容及其解析

1.內(nèi)容: 余弦定理

2.解析: 余弦定理是繼正弦定理教學(xué)之后又一關(guān)于三角形的邊角關(guān)系準(zhǔn)確量化的一個(gè)重要定理。在初中,學(xué)生已經(jīng)學(xué)習(xí)了相關(guān)邊角關(guān)系的定性的結(jié)果,就是“在任意三角形中大邊對大角,小邊對小角”,“如果已知兩個(gè)三角形的兩條對應(yīng)邊及其所夾的角相等,則這兩個(gè)三角形全等”。同時(shí)學(xué)生在初中階段能解決直角三角形中一些邊角之間的定量關(guān)系。在高中階段,學(xué)生在已有知識的基礎(chǔ)上,通過對任意三角形邊角關(guān)系的探究,發(fā)現(xiàn)并掌握任意三角形中邊角之間的定量關(guān)系,從而進(jìn)一步運(yùn)用它們解決一些與測量和幾何計(jì)算有關(guān)的實(shí)際問題,使學(xué)生能更深地體會數(shù)學(xué)來源于生活,數(shù)學(xué)服務(wù)于生活。

二、目標(biāo)及其解析

目標(biāo):

1、使學(xué)生掌握余弦定理及推論,并會初步運(yùn)用余弦定理及推論解三角形。

2、通過對三角形邊角關(guān)系的探究,能證明余弦定理,了解從三角方法、解析方法、向量方法和正弦定理等途徑證明余弦定理。解析:

1、在發(fā)現(xiàn)和證明余弦定理中,通過聯(lián)想、類比、轉(zhuǎn)化等思想方法比較證明余弦定理的不同 方法,從而培養(yǎng)學(xué)生的發(fā)散思維。

2、能用余弦定理解決生活中的實(shí)際問題,可以培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,使學(xué)生進(jìn)一步認(rèn)識到數(shù)學(xué)是有用的。

三、教學(xué)問題診斷分析

1、通過前一節(jié)正弦定理的學(xué)習(xí),學(xué)生已能解決這樣兩類解三角形的問題:

①已知三角形的任意兩個(gè)角與邊,求其他兩邊和另一角;②已知三角形的任意兩個(gè)角與其中一邊的對角,計(jì)算另一邊的對角,進(jìn)而計(jì)算出其他的邊和角。

而在已知三角形兩邊和它們的夾角,計(jì)算出另一邊和另兩個(gè)角的問題上,學(xué)生產(chǎn)生了認(rèn)知沖突,這就迫切需要他們掌握三角形邊角關(guān)系的另一種定量關(guān)系。所以,教學(xué)的重點(diǎn)應(yīng)放在余弦定理的發(fā)現(xiàn)和證明上。

2、在以往的教學(xué)中存在學(xué)生認(rèn)知比較單一,對余弦定理的證明方法思考也比較單一,而

本節(jié)的教學(xué)難點(diǎn)就在于余弦定理的證明。如何啟發(fā)、引導(dǎo)學(xué)生經(jīng)過聯(lián)想、類比、轉(zhuǎn)化多角度地對余弦定理進(jìn)行證明,從而突破這一難點(diǎn)。

3、學(xué)習(xí)了正弦定理和余弦定理,學(xué)生在解三角形中,如何適當(dāng)?shù)剡x擇定理以達(dá)到更有效地解題,也是本節(jié)內(nèi)容應(yīng)該關(guān)注的問題,特別是求某一個(gè)角有時(shí)既可以用余弦定理,也可以用正弦定理時(shí),教學(xué)中應(yīng)注意讓學(xué)生能理解兩種方法的利弊之處,從而更有效地解題。

四、教學(xué)支持條件分析

為了將學(xué)生從繁瑣的計(jì)算中解脫出來,將精力放在對定理的證明和運(yùn)用上,所以本節(jié)中復(fù)雜的計(jì)算借助計(jì)算器來完成。當(dāng)使用計(jì)算器時(shí),約定當(dāng)計(jì)算器所得的三角函數(shù)值是準(zhǔn)確數(shù)時(shí)用等號,當(dāng)取其近似值時(shí),相應(yīng)的運(yùn)算采用約等號。但一般的代數(shù)運(yùn)算結(jié)果按通常的運(yùn)算規(guī)則,是近似值時(shí)用約等號。

五、教學(xué)過程

(一)教學(xué)基本流程

教學(xué)過程:

一、創(chuàng)設(shè)情境,引入課題

問題1:在△ABC中,∠C = 90°,則用勾股定理就可以得到c2=a2+b

2?!驹O(shè)計(jì)意圖】:引導(dǎo)學(xué)生從最簡單入手,從而通過添加輔助線構(gòu)造直角三角形。師生活動:引導(dǎo)學(xué)生從特殊入手,用已有的初中所學(xué)的平面幾何的有關(guān)知識來研究這一問題,從而尋找出這些量之間存在的某種定量關(guān)系。

學(xué)生1:在△ABC中,如圖4,過C作CD⊥AB,垂足為D。在Rt△ACD中,AD=bsin∠1,CD= bcos∠1;在Rt△BCD中,BD=asin∠2, CD=acos∠2;c=(AD+BD)=b-CD+a-CD+2AD?BD

= a?b?2abcos?1?cos?2?2absin?1?sin?2=a?b?2abcos(?1??2)?a?b?2abcosC

A

D圖

4學(xué)生2:如圖5,過A作AD⊥BC,垂足為D。

A

5則:c?AD?BD

2?b?CD?(a?CD)?a?b?2a?CD?a?b?2abcosC

學(xué)生3:如圖5,AD = bsinC,CD = bcosC,∴c2 =(bsinC)2+(a-bcosC)2 = a2 +b2-2abcosC

類似地可以證明b= a+c-2accosB,c= a+b-2abcosC。

【設(shè)計(jì)意圖】:首先肯定學(xué)生成果,進(jìn)一步的追問以上思路是否完整,可以使學(xué)生的思維更加嚴(yán)密。

師生活動:得出了余弦定理,教師還應(yīng)引導(dǎo)學(xué)生聯(lián)想、類比、轉(zhuǎn)化,思考是否還有其他方法證明余弦定理。

教師:在前面學(xué)習(xí)正弦定理的證明過程種,我們用向量法比較簡便地證明了正弦定理,那么在余弦定理的證明中,你會有什么想法?

【設(shè)計(jì)意圖】:通過類比、聯(lián)想,讓學(xué)生的思維水平得到進(jìn)一步鍛煉和提高,體驗(yàn)到成功的樂趣。

學(xué)生4:如圖6,????????????記AB?c,CB?a,CA?b????????????則c?AB?CB?CA?a?b???2

2?(c)?(a?b)

?2?2??

?a?b?2a?b?2?2?2??

即c?a?b?2a?b?cosC?c?a?b?2abcosC

A

圖6

【設(shè)計(jì)意圖】:由向量又聯(lián)想到坐標(biāo),引導(dǎo)學(xué)生從直角坐標(biāo)中用解析法證明定理。

學(xué)生7:如圖7,建立直角坐標(biāo)系,在△ABC中,AC = b,BC = a.且A(b,0),B(acosC,asinC),C(0,0),則 c?AB

?(acosC?b)?(asinC)

?a?b?2abcosC

【設(shè)計(jì)意圖】:通過以上平面幾何知識、向量法、解析法引導(dǎo)學(xué)生體會證明余弦定理,更好地讓學(xué)生主動投入到整個(gè)數(shù)學(xué)學(xué)習(xí)的過程中,培養(yǎng)學(xué)生發(fā)散思維能力,拓展學(xué)生思維空

間的深度和廣度。

二、探究定理 余弦定理:

a

2222222

2?b?c?2bccosA,b?a?c?2accosB,c?a?b?2abcosC

余弦定理推論: cosA?

b?c?a

2bc,cosB?

a?c?b

2ac

222,cosC?

a?b?c

2ab

222

解決類型:(1)已知三角形的三邊,可求出三角;

(2)已知三角形的任意兩邊與兩邊的夾角,可求出另外一邊和兩角。

三、例題

例1:①在△ABC中,已知a = 2,b = 3,∠C = 60°,求邊c。

②在△ABC中,已知a = 7,b = 3,c = 5,求A、B、C。

【設(shè)計(jì)意圖】:讓學(xué)生理解余弦定理及推論解決兩類最基本問題,既①已知三角形兩邊及夾角,求第三邊;②已知三角形三邊,求三內(nèi)角。

四、目標(biāo)檢測

1、若三角形的三邊為2,4,23,那么這個(gè)三角形的形狀為()A.銳角三角形B.直角三角形C.鈍角三角形D.等腰直角三角形 2.已知三角形的三邊為3、4、6,那么此三角形有()

A.三個(gè)銳角 B.兩個(gè)銳角,一個(gè)直角 C.兩個(gè)銳角,一個(gè)鈍角 D.以上都不對 3.在△ABC中,若其三邊的比是a∶b∶c = 3∶5∶7,則三個(gè)內(nèi)角正弦值的比是______.

4.在△ABC中,已知a = 4,b = 6,C = 120°,求sinA.

五、小結(jié)

本節(jié)課的主要內(nèi)容是余弦定理的證明,從平面幾何、向量、坐標(biāo)等各個(gè)不同的方面進(jìn)行探究,得出的余弦定理無論在什么形狀的三角形中都成立,勾股定理也只不過是它的特例。所以它很“完美”,從式子上又可以看出其具“簡捷、和諧、對稱”的美,其變式即推論也很協(xié)調(diào)。

【設(shè)計(jì)意圖】:在學(xué)生探究數(shù)學(xué)美,欣賞美的過程中,體會數(shù)學(xué)造化之神奇,學(xué)生可以

興趣盎然地掌握公式特征、結(jié)構(gòu)及其他變式。

學(xué)案

1.2 余弦定理

班級學(xué)號

一、學(xué)習(xí)目標(biāo)

1、使學(xué)生掌握余弦定理及推論,并會初步運(yùn)用余弦定理及推論解三角形。

2、通過對三角形邊角關(guān)系的探究,能證明余弦定理,了解從三角方法、解析方法、向量方法和正弦定理等途徑證明余弦定理。

二、例題與問題

例1:①在△ABC中,已知a = 2,b = 3,∠C = 60°,求邊c。

②在△ABC中,已知a = 7,b = 3,c = 5,求A、B、C。

三、目標(biāo)檢測

1、若三角形的三邊為2,4,23,那么這個(gè)三角形的形狀為()A.銳角三角形B.直角三角形C.鈍角三角形D.等腰直角三角形 2.已知三角形的三邊為3、4、6,那么此三角形有()

A.三個(gè)銳角 B.兩個(gè)銳角,一個(gè)直角 C.兩個(gè)銳角,一個(gè)鈍角 D.以上都不對 3.在△ABC中,若其三邊的比是a∶b∶c = 3∶5∶7,則三個(gè)內(nèi)角正弦值的比是______.

4.在△ABC中,已知a = 4,b = 6,C = 120°,求sinA.

配餐作業(yè)

一、基礎(chǔ)題(A組)

1.在△ABC中,若acosA?bcosB,則△ABC的形狀是()A.等腰三角形C.等腰直角三角形

B.直角三角形D.等腰或直角三角形

2.△ABC中,sinA:sinB:sinC?3:2:4,那么cosC?()

A.4B.3C.?

D.?

3.在△ABC中,已知a?2,b?3,C=120°,則sinA的值為()

2157

A.38B.7 C.19 D.3

4.在△ABC中,B=135°,C=15°,a?5,則此三角形的最大邊長為。5.△ABC中,如果a?6,b?63,A=30°,邊c?。

二、鞏固題(B組)

6.在△ABC中,化簡bcosC?ccosB?()

b?c

a?c

a?b

A.a

B.C.D.7.已知三角形的三邊長分別為a、b、a?ab?b,則三角形的最大內(nèi)角是()A.135°

B.120°

C.60°

D.90°

8.三角形的兩邊分別為5和3,它們夾角的余弦是方程5x?7x?6?0的根,則另一邊長為()

A.52B.16

C.4D.2

9.(06年北京卷,理12)在△ABC中,若sinA:sinB:sinC?5:7:8,則∠B的大小是。

三、提高題(C組

tanB

?2a?cc

10.在△ABC中,a,b,c分別是角A、B、C的對邊,且tanCa?b?c?,2ab,(1)求C;(2)求A。

cosB

b2a?c

11.在△ABC中,a,b,c分別是A、B、C的對邊,且cosC(1)求角B的大小;(2)若b?

??,a?c?4,求a的值;

余弦定理教案(篇9)

各位評委各位同學(xué),大家好!我是數(shù)學(xué)()號選手,今天我說課的題目是余弦定理,選自高中數(shù)學(xué)第一冊(下)中第五章平面向量第二部分解斜三角形的第二節(jié)。我以新課標(biāo)的理念為指導(dǎo),將教什么、怎樣教,為什么這樣教,分為教材與學(xué)情分析、教法與學(xué)法、教學(xué)過程、板書設(shè)計(jì)四個(gè)方面進(jìn)行說明:

一、教材與學(xué)情分析

這節(jié)課與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系及判定三角形的全等有密切聯(lián)系,是高考的必考內(nèi)容之一,在日常生活和工業(yè)生產(chǎn)中也應(yīng)用很多。因此,余弦定理的知識非常重要。這堂課,我并不準(zhǔn)備將余弦定理全盤托出呈現(xiàn)給學(xué)生,而是采用創(chuàng)設(shè)情境式教學(xué),通過具體的情景激發(fā)學(xué)生探索新知識的欲望,引導(dǎo)學(xué)生一步步探究并發(fā)現(xiàn)余弦定理。

根據(jù)教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識水平,我制定如下三個(gè)教學(xué)目標(biāo):

(1)知識目標(biāo):掌握余弦定理兩種表示形式,解決兩類基本的解三角形問題。

(2)能力目標(biāo):通過三角函數(shù)、余弦定理、向量的數(shù)量積等知識間的關(guān)系,來理解事物之間的普遍聯(lián)系。

(3)情感目標(biāo):面向全體學(xué)生,創(chuàng)造輕松愉快的教學(xué)氛圍,在教學(xué)中體會形數(shù)美的統(tǒng)一,充分調(diào)動學(xué)生的主動性和積極性,給學(xué)生成功的體驗(yàn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

我將本節(jié)課的教學(xué)重點(diǎn)設(shè)為掌握余弦定理,教學(xué)難點(diǎn)設(shè)為初步應(yīng)用余弦定理解三角形問題。

二、教法與學(xué)法

1、教法選擇:根據(jù)本節(jié)課的教學(xué)目標(biāo)、教材內(nèi)容及學(xué)生的認(rèn)知特點(diǎn),我選擇創(chuàng)設(shè)情境教學(xué)法、探究教學(xué)法和引導(dǎo)發(fā)現(xiàn)法相結(jié)合。以學(xué)生自主探究、合作交流為主,教師啟發(fā)引導(dǎo)為輔。

2、教學(xué)組織形式:師生互動、生生互動。

3、學(xué)法指導(dǎo):巴甫洛夫曾指出:“方法是最主要和最基本的東西”,因此學(xué)之有法,才能學(xué)之有效,學(xué)之有趣。根據(jù)本節(jié)課的特點(diǎn),我在學(xué)法上指導(dǎo)學(xué)生:

①如何探究問題②遇到新的問題時(shí)如何轉(zhuǎn)化為熟悉的問題③做好評價(jià)與反思。

4、教學(xué)手段

根據(jù)數(shù)學(xué)課的特點(diǎn),我采用的教具是:多媒體和黑板相結(jié)合。利用多媒體進(jìn)行動態(tài)和直觀的演示,輔助課堂教學(xué),為學(xué)生提供感性材料,幫助學(xué)生探索并發(fā)現(xiàn)余弦定理。對證明過程和知識體系板書演示,力爭與學(xué)生的思維同步。學(xué)具是:紙張、直尺、量角器。

三、教學(xué)過程

三、教學(xué)過程

為了實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),在教學(xué)中注意突出重點(diǎn)、突破難點(diǎn),我將從

創(chuàng)設(shè)情境、導(dǎo)入課題;

引導(dǎo)探究、獲得性質(zhì);

應(yīng)用遷移、交流反思;

拓展升華、發(fā)散思維;

小結(jié)歸納、布置作業(yè)

五個(gè)層次進(jìn)行教學(xué),具體過程如下:過程省略。

四、板書設(shè)計(jì):

板書是課堂教學(xué)必不可少的組成部分,為了再現(xiàn)本節(jié)課的知識體系,滲透結(jié)構(gòu)思想,突出本節(jié)課的重點(diǎn),我將這樣設(shè)計(jì)板書。性質(zhì)的證明和習(xí)題解答是學(xué)生完成的,讓學(xué)生寫到黑板上,發(fā)現(xiàn)錯(cuò)誤可及時(shí)糾正;我將本節(jié)課的知識體系展示到黑板上,利于學(xué)生理清思路。

幼兒園教案《余弦定理教案匯集九篇》一文希望您能收藏!“幼兒教師教育網(wǎng)”是專門為給您提供幼兒園教案而創(chuàng)建的網(wǎng)站。同時(shí),yjs21.com還為您精選準(zhǔn)備了余弦定理教案專題,希望您能喜歡!

相關(guān)推薦

  • 余弦定理教案匯總 教案課件是老師教學(xué)工作的起始環(huán)節(jié),這就需要我們老師自己抽時(shí)間去完成。寫好教案課件,可以避免重要內(nèi)容被忘記,什么樣的教案課件才是好課件呢?《余弦定理教案》是由編輯特意為您提供的內(nèi)容,歡迎大家借鑒與參考,希望對大家有所幫助!...
    2023-04-30 閱讀全文
  • 余弦定理課件教案合集 根據(jù)您的需求,編輯為您整理了以下的“余弦定理課件教案”,煩請您仔細(xì)閱讀并收藏本文。老師職責(zé)的其中一項(xiàng)是編寫自己的教案和課件,因此老師在撰寫教案時(shí)必須認(rèn)真對待。老師在上課時(shí)將按照教案和課件來實(shí)施教學(xué)。...
    2023-05-25 閱讀全文
  • 余弦定理教案通用 以下是幼兒教師教育網(wǎng)的編輯為您搜集整理的“余弦定理教案”。老師的部分工作內(nèi)容就有制作自己教案課件,這就要老師好好去自己教案課件了。教案是完整課堂教學(xué)的保障。熱烈歡迎您來對本文參考閱讀!...
    2023-08-04 閱讀全文
  • 余弦定理課件 俗話說,手中無網(wǎng)看魚跳。。在幼兒園教師的平時(shí)工作生活中,會經(jīng)常需要提前準(zhǔn)備參考資料。資料通常是指書籍、報(bào)刊、圖表、圖片等。有了資料,這樣接下來工作才會更上一層樓!你是否收藏了一些有用的幼師資料內(nèi)容呢?請你閱讀小編輯為你編輯整理的《余弦定理課件》,強(qiáng)烈建議你能收藏本頁以方便閱讀!教材分析:。是全日制普...
    2024-03-22 閱讀全文
  • 余弦定理課件模板5篇 我們所呈現(xiàn)的“余弦定理課件”旨在為需要參考借鑒的朋友提供幫助,以期達(dá)到預(yù)期效果。在進(jìn)行授課之前,老師需提前準(zhǔn)備好教案及課件,相信這也并不陌生。教案是從個(gè)性化方面為學(xué)生提供有效保障的方式之一。...
    2023-06-29 閱讀全文

教案課件是老師教學(xué)工作的起始環(huán)節(jié),這就需要我們老師自己抽時(shí)間去完成。寫好教案課件,可以避免重要內(nèi)容被忘記,什么樣的教案課件才是好課件呢?《余弦定理教案》是由編輯特意為您提供的內(nèi)容,歡迎大家借鑒與參考,希望對大家有所幫助!...

2023-04-30 閱讀全文

根據(jù)您的需求,編輯為您整理了以下的“余弦定理課件教案”,煩請您仔細(xì)閱讀并收藏本文。老師職責(zé)的其中一項(xiàng)是編寫自己的教案和課件,因此老師在撰寫教案時(shí)必須認(rèn)真對待。老師在上課時(shí)將按照教案和課件來實(shí)施教學(xué)。...

2023-05-25 閱讀全文

以下是幼兒教師教育網(wǎng)的編輯為您搜集整理的“余弦定理教案”。老師的部分工作內(nèi)容就有制作自己教案課件,這就要老師好好去自己教案課件了。教案是完整課堂教學(xué)的保障。熱烈歡迎您來對本文參考閱讀!...

2023-08-04 閱讀全文

俗話說,手中無網(wǎng)看魚跳。。在幼兒園教師的平時(shí)工作生活中,會經(jīng)常需要提前準(zhǔn)備參考資料。資料通常是指書籍、報(bào)刊、圖表、圖片等。有了資料,這樣接下來工作才會更上一層樓!你是否收藏了一些有用的幼師資料內(nèi)容呢?請你閱讀小編輯為你編輯整理的《余弦定理課件》,強(qiáng)烈建議你能收藏本頁以方便閱讀!教材分析:。是全日制普...

2024-03-22 閱讀全文

我們所呈現(xiàn)的“余弦定理課件”旨在為需要參考借鑒的朋友提供幫助,以期達(dá)到預(yù)期效果。在進(jìn)行授課之前,老師需提前準(zhǔn)備好教案及課件,相信這也并不陌生。教案是從個(gè)性化方面為學(xué)生提供有效保障的方式之一。...

2023-06-29 閱讀全文